907 resultados para Damage mitigation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tumor response to antineoplastic drugs is not always predictable. This is also true for bladder carcinoma, a highly recurrent neoplasia. Currently, the combination of cisplatin and gemcitabine is well accepted as a standard protocol for treating bladder carcinoma. However, in some cases, this treatment protocol causes harmful side effects. Therefore, we investigated the roles of the genes TP53, RASSF1A (a tumor suppressor gene) and hMLH1 (a gene involved in the mismatch repair pathway) in cell susceptibility to cisplatin/gemcitabine treatment. Two bladder transitional carcinoma cell (TCC) lines, RT4 (wild-type TP53) and 5637 (mutated TP53), were used in this study. First, we evaluated whether the genotoxic potential of cisplatin/gemcitabine was dependent on TP53 status. Then, we evaluated whether the two antineoplastic drugs modulated RASSF1A and hMLH1 expression in the two cell lines. Increased DNA damage was observed in both cell lines after treatment with cisplatin or gemcitabine and with the two drugs simultaneously, as depicted by the comet assay. A lack of RASSF1A expression and hypermethylation of its promoter were observed before and after treatment in both cell lines. On the other hand, hMLH1 downregulation, unrelated to methylation status, was observed in RT4 cells after treatment with cisplatin or with cisplatin and gemcitabine simultaneously (wild-type TP53); in 5637 cells, hMLH1 was upregulated only after treatment with gemcitabine. In conclusion, the three treatment protocols were genotoxic, independent of TP53 status. However, cisplatin was the most effective, causing the highest level of DNA damage in both wild-type and mutated TP53 cells. Gemcitabine was the least genotoxic agent in both cell lines. Furthermore, no relationship was observed between the amount of DNA damage and the level of hMLH1 and RASSF1A expression. Therefore, other alternative pathways might be involved in cisplatin and gemcitabine genotoxicity in these two bladder cancer cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cisplatin is an effective antineoplastic drug. However, it provokes considerable collateral effects, including genotoxic and clastogenic activity. It has been reported that a diet rich in glutamine can help inhibit such collateral effects. We evaluated this activity in 40 Swiss mice, distributed into eight experimental groups: G1 - Control group (PBS 0.1 mL/10g body weight); G2 - cisplatin group (cisplatin 6 mg/kg intraperitoneally); G3, G4, G5 - glutamine groups (glutamine at 150, 300, and 600 mg/kg, respectively; orally); G6, G7, G8 - Pre-treatment groups (glutamine at 150, 300, and 600 mg/kg, respectively; orally and cisplatin 6 mg/kg intraperitonially). For the micronucleus assay, samples of blood were collected (before the first use of the drugs at T0, then 24 (T1) and 48 (T2) hours after the first administration). For the comet assay, blood samples were collected only at T2. The damage reduction percentages for the micronucleus assay were 90.0, 47.3, and 37.3% at T1 and 46.0, 38.6, and 34.7% at T2, for G6, G7, and G8 groups, respectively. For the comet assay, the damage reduction percentages were 113.0, 117.4, and 115.0% for G6, G7, and G8, respectively. We conclude that glutamine is able to prevent genotoxic and clastogenic damages caused by cisplatin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural durability is an important design criterion, which must be assessed for every type of structure. In this regard, especial attention must be addressed to the durability of reinforced concrete (RC) structures. When RC structures are located in aggressive environments, its durability is strongly reduced by physical/chemical/mechanical processes that trigger the corrosion of reinforcements. Among these processes, the diffusion of chlorides is recognized as one of major responsible of corrosion phenomenon start. To accurate modelling the corrosion of reinforcements and to assess the durability of RC structures, a mechanical model that accounts realistically for both concrete and steel mechanical behaviour must be considered. In this context, this study presents a numerical nonlinear formulation based on the finite element method applied to structural analysis of RC structures subjected to chloride penetration and reinforcements corrosion. The physical nonlinearity of concrete is described by Mazars damage model whereas for reinforcements elastoplastic criteria are adopted. The steel loss along time due to corrosion is modelled using an empirical approach presented in literature and the chloride concentration growth along structural cover is represented by Fick's law. The proposed model is applied to analysis of bended structures. The results obtained by the proposed numerical approach are compared to responses available in literature in order to illustrate the evolution of structural resistant load after corrosion start. (C) 2014 Elsevier Ltd. All rights reserved.