969 resultados para DYNAMIC LIGHT-SCATTERING
Resumo:
Why are some companies more successful than others? This thesis approaches the question by enlisting theoretical frameworks that explain the performance with internal factors, deriving from the resource-based view, namely the dynamic capabilities approach. To deepen the understanding of the drivers and barriers towards developing these higher order routines aiming at improving the operational level routines, this thesis explores the organisational culture and identity research for the microfoundational antecedents that might shed light on the formation of the dynamic capabilities. The dynamic capabilities framework in this thesis strives to take the theoretical concept closer to practical applicability. This is achieved through creation of a dynamic capabilities matrix, consisting of four dimensions often encountered in dynamic capabilities literature. The quadrants are formed along internal-external and resources-abilities axes, and consist of Sensing, Learning, Reconfiguration and Partnering facets. A key element of this thesis is the reality continuum, which illustrates the different levels of reality inherent in any entity of human individuals. The theoretical framework constructed in the thesis suggests a link between the collective but constructivist understanding of the organisation and both the operational and higher level routines, evident in the more positivist realm. The findings from three different case organisations suggest that the constructivist assumptions inherent to an organisation function as a generative base for both drivers and barriers towards developing dynamic capabilities. From each organisation one core assumption is scrutinized to identify its connections to the four dimensions of the dynamic capabilities. These connections take the form of drivers or barriers – or have the possibility to develop into one or the other. The main contribution of this thesis is to show that one key for an organisation to perform well in a turbulent setting, is to understand the different levels of realities inherent in any group of people. Recognising the intangible levels gives an advantage in the tangible ones.
Resumo:
A well-organised reduced graphene oxide (RGO) and silver (Ag) wrapped TiO2 nano-hybrid was successfully achieved through a facile and easy route. The inherent characteristics of the synthesized RGO-Ag/TiO2 were revealed through crystalline phase, morphology, chemical composition, Raman scattering, UV-visible absorption, and photoluminescence analyses. The adopted synthesis route significantly controlled the uniform formation of silver nanoparticles and contributed for the absorption of light in the visible spectrum through localized surface plasmon resonance effects. The wrapped RGO nanosheets triggered the electron mobility and promoted visible light shift towards red spectrum. The accomplishment of synergised effect of RGO and Ag well degraded Bisphenol A under visible light irradiation with a removal efficiency of 61.9%.
Resumo:
Part 17: Risk Analysis
Resumo:
Investigation of large, destructive earthquakes is challenged by their infrequent occurrence and the remote nature of geophysical observations. This thesis sheds light on the source processes of large earthquakes from two perspectives: robust and quantitative observational constraints through Bayesian inference for earthquake source models, and physical insights on the interconnections of seismic and aseismic fault behavior from elastodynamic modeling of earthquake ruptures and aseismic processes.
To constrain the shallow deformation during megathrust events, we develop semi-analytical and numerical Bayesian approaches to explore the maximum resolution of the tsunami data, with a focus on incorporating the uncertainty in the forward modeling. These methodologies are then applied to invert for the coseismic seafloor displacement field in the 2011 Mw 9.0 Tohoku-Oki earthquake using near-field tsunami waveforms and for the coseismic fault slip models in the 2010 Mw 8.8 Maule earthquake with complementary tsunami and geodetic observations. From posterior estimates of model parameters and their uncertainties, we are able to quantitatively constrain the near-trench profiles of seafloor displacement and fault slip. Similar characteristic patterns emerge during both events, featuring the peak of uplift near the edge of the accretionary wedge with a decay toward the trench axis, with implications for fault failure and tsunamigenic mechanisms of megathrust earthquakes.
To understand the behavior of earthquakes at the base of the seismogenic zone on continental strike-slip faults, we simulate the interactions of dynamic earthquake rupture, aseismic slip, and heterogeneity in rate-and-state fault models coupled with shear heating. Our study explains the long-standing enigma of seismic quiescence on major fault segments known to have hosted large earthquakes by deeper penetration of large earthquakes below the seismogenic zone, where mature faults have well-localized creeping extensions. This conclusion is supported by the simulated relationship between seismicity and large earthquakes as well as by observations from recent large events. We also use the modeling to connect the geodetic observables of fault locking with the behavior of seismicity in numerical models, investigating how a combination of interseismic geodetic and seismological estimates could constrain the locked-creeping transition of faults and potentially their co- and post-seismic behavior.
Resumo:
In this paper, a smart wireless wristband is proposed. The potential of innovative gesture based interactivity with connected lighting solutions is reviewed. The solution is intended to offer numerous benefits, in terms of ease of use, and enhanced dynamic interactive functionality. A comparative analysis will be carried out between this work and existing solutions. The evolution of lighting and gesture controls will be discussed and an overview of alternative applications will be provided, as part of the critical analysis.
Resumo:
The semiarid region of northeastern Brazil, the Caatinga, is extremely important due to its biodiversity and endemism. Measurements of plant physiology are crucial to the calibration of Dynamic Global Vegetation Models (DGVMs) that are currently used to simulate the responses of vegetation in face of global changes. In a field work realized in an area of preserved Caatinga forest located in Petrolina, Pernambuco, measurements of carbon assimilation (in response to light and CO2) were performed on 11 individuals of Poincianella microphylla, a native species that is abundant in this region. These data were used to calibrate the maximum carboxylation velocity (Vcmax) used in the INLAND model. The calibration techniques used were Multiple Linear Regression (MLR), and data mining techniques as the Classification And Regression Tree (CART) and K-MEANS. The results were compared to the UNCALIBRATED model. It was found that simulated Gross Primary Productivity (GPP) reached 72% of observed GPP when using the calibrated Vcmax values, whereas the UNCALIBRATED approach accounted for 42% of observed GPP. Thus, this work shows the benefits of calibrating DGVMs using field ecophysiological measurements, especially in areas where field data is scarce or non-existent, such as in the Caatinga
Resumo:
The objective of this study is to verify the dynamics between fiscal policy, measured by public debt, and monetary policy, measured by a reaction function of a central bank. Changes in monetary policies due to deviations from their targets always generate fiscal impacts. We examine two policy reaction functions: the first related to inflation targets and the second related to economic growth targets. We find that the condition for stable equilibrium is more restrictive in the first case than in the second. We then apply our simulation model to Brazil and United Kingdom and find that the equilibrium is unstable in the Brazilian case but stable in the UK case.
Resumo:
To evaluate the influence of light-activation of second, third and fourth increments on degree of conversion (DC) and microhardness (KHN) of the top (T) and bottom (B) surface of the first increment. Forty samples (n = 5) were prepared. In groups 1-4, after each increment light-activation (multiple irradiation), T and B of the first increment were measured in DC and KHN. In groups 5-8, only the first increment was made (single irradiation) and measurements of DC and KHN were taken at 15 min intervals. The light-activation modes were (XL) 500 mW/cm(2) × 38 s (G1/G5); (S) 1000 mW/cm(2) × 19 s (G2/G6), (HP) 1400 mW/cm(2) × 14 s (G3/G7); (PE) 3200 mW/cm(2) × 6 s (G4/G8). Data for DC and KHN were analyzed separately by using PROC MIXED for repeated measures and Tukey-Kramer test (α = 0.05). For KHN, B showed lower values than T. PE resulted in lower values of KHN in B surface. For single and multiple irradiations, T and B of first measurement showed the lowest KHN and the fourth measurement showed the highest, with significant difference between them. For single irradiation, first and second increments presented similar KHN, different from the third and fourth increment, which did not differ between them. For multiple irradiations, the second light-activation resulted in KHN similar to first, third and fourth increments. For DC, except QTH, T presented higher DC than B. The light-activation of successive increments was not able to influence the KHN and DC of the first increment.
Resumo:
Cancer is a multistep process that begins with the transformation of normal epithelial cells and continues with tumor growth, stromal invasion and metastasis. The remodeling of the peritumoral environment is decisive for the onset of tumor invasiveness. This event is dependent on epithelial-stromal interactions, degradation of extracellular matrix components and reorganization of fibrillar components. Our research group has studied in a new proposed rodent model the participation of cellular and molecular components in the prostate microenvironment that contributes to cancer progression. Our group adopted the gerbil Meriones unguiculatus as an alternative experimental model for prostate cancer study. This model has presented significant responses to hormonal treatments and to development of spontaneous and induced neoplasias. The data obtained indicate reorganization of type I collagen fibers and reticular fibers, synthesis of new components such as tenascin and proteoglycans, degradation of basement membrane components and elastic fibers and increased expression of metalloproteinases. Fibroblasts that border the region, apparently participate in the stromal reaction. The roles of each of these events, as well as some signaling molecules, participants of neoplastic progression and factors that promote genetic reprogramming during epithelial-stromal transition are also discussed.
Resumo:
This in vitro study evaluated the cytotoxicity of an experimental restorative composite resin subjected to different light-curing regimens. METHODS: Forty round-shaped specimens were prepared and randomly assigned to four experimental groups (n=10), as follows: in Group 1, no light-curing; in Groups 2, 3 and 4, the composite resin specimens were light-cured for 20, 40 or 60 s, respectively. In Group 5, filter paper discs soaked in 5 µL PBS were used as negative controls. The resin specimens and paper discs were placed in wells of 24-well plates in which the odontoblast-like cells MDPC-23 (30,000 cells/cm²) were plated and incubated in a humidified incubator with 5% CO2 and 95% air at 37ºC for 72 h. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). The data were analyzed statistically by Kruskal-Wallis and Mann-Whitney tests (p<0.05). RESULTS: In G1, cell metabolism decreased by 86.2%, indicating a severe cytotoxicity of the non-light-cured composite resin. On the other hand, cell metabolism decreased by only 13.3% and 13.5% in G2 and G3, respectively. No cytotoxic effects were observed in G4 and G5. In G1, only a few round-shaped cells with short processes on their cytoplasmic membrane were observed. In the other experimental groups as well as in control group, a number of spindle-shaped cells with long cytoplasmic processes were found. CONCLUSION: Regardless of the photoactivation time used in the present investigation, the experimental composite resin presented mild to no toxic effects to the odontoblast-like MDPC-23 cells. However, intense cytotoxic effects occurred when no light-curing was performed.
Resumo:
The purpose of this study was to compare the polymerization shrinkage stress of composite resins (microfilled, microhybrid and hybrid) photoactivated by quartz-tungsten halogen light (QTH) and light-emitting diode (LED). Glass rods (5.0 mm x 5.0 cm) were fabricated and had one of the surfaces air-abraded with aluminum oxide and coated with a layer of an adhesive system, which was photoactivated with the QTH unit. The glass rods were vertically assembled, in pairs, to a universal testing machine and the composites were applied to the lower rod. The upper rod was placed closer, at 2 mm, and an extensometer was attached to the rods. The 20 composites were polymerized by either QTH (n=10) or LED (n=10) curing units. Polymerization was carried out using 2 devices positioned in opposite sides, which were simultaneously activated for 40 s. Shrinkage stress was analyzed twice: shortly after polymerization (t40s) and 10 min later (t10min). Data were analyzed statistically by 2-way ANOVA and Tukey's test (a=5%). The shrinkage stress for all composites was higher at t10min than at t40s, regardless of the activation source. Microfilled composite resins showed lower shrinkage stress values compared to the other composite resins. For the hybrid and microhybrid composite resins, the light source had no influence on the shrinkage stress, except for microfilled composite at t10min. It may be concluded that the composition of composite resins is the factor with the strongest influence on shrinkage stress.
Resumo:
This study evaluated in vitro the pulp chamber temperature rise induced by the light-activated dental bleaching technique using different light sources. The root portions of 78 extracted sound human mandibular incisors were sectioned approximately 2 mm below the cementoenamel junction. The root cavities of the crowns were enlarged to facilitate the correct placing of the sensor into the pulp chamber. Half of specimens (n=39) was assigned to receive a 35% hydrogen peroxide gel on the buccal surface and the other halt (n=39) not to receive the bleaching agent. Three groups (n=13) were formed for each condition (bleach or no bleach) according to the use of 3 light sources recommended for dental bleaching: a light-emitting diode (LED)laser system, a LED unit and a conventional halogen light. The light sources were positioned perpendicular to the buccal surface at a distance of 5 mm and activated during 30 s. The differences between the initial and the highest temperature readings for each specimen were obtained, and, from the temperature changes, the means for each specimen and each group were calculated. The values of temperature rise were compared using Kruskal-Wallis test at 1% significance level. Temperature rise varied significantly depending on the light-curing unit, with statistically significant differences (p<0.01) among the groups. When the bleaching agent was not applied, the halogen light induced the highest temperature rise (2.38±0.66ºC). The LED unit produced the lowest temperature increase (0.29±0.13ºC); but there was no significant difference between LED unit and LED-laser system (0.35±0.15ºC) (p>0.01). When the bleaching agent was applied, there were significant differences among groups (p<0.01): halogen light induced the highest temperature rise (1.41±0.64ºC), and LED-laser system the lowest (0.33±0.12ºC); however, there was no difference between LED-laser system and LED unit (0.44±0.11ºC). LED and LED-laser system did not differ significantly from each other regardless the temperature rise occurred with or without bleaching agent application. It may be concluded that during light-activated tooth bleaching, with or without the bleaching agent, halogen light promoted higher pulp chamber temperature rise than LED unit and LED-laser system. The tested light-curing units provided increases in the pulp chamber temperature that were compatible with pulpal health.
Resumo:
This study evaluated in vitro the shear bond strength (SBS) of a resin-based pit-and-fissure sealant [Fluroshield (F), Dentsply/Caulk] associated with either an etch-and-rinse [Adper Single Bond 2 (SB), 3M/ESPE] or a self-etching adhesive system [Clearfil S3 Bond (S3), Kuraray Co., Ltd.] to saliva-contaminated enamel, comparing two curing protocols: individual light curing of the adhesive system and the sealant or simultaneous curing of both materials. Mesial and distal enamel surfaces from 45 sound third molars were randomly assigned to 6 groups (n=15), according to the bonding technique: I - F was applied to 37% phosphoric acid etched enamel. The other groups were contaminated with fresh human saliva (0.01 mL; 10 s) after acid etching: II - SB and F were light cured separately; III - SB and F were light cured together; IV - S3 and F were light cured separately; V - S3 and F were light cured simultaneously; VI - F was applied to saliva-contaminated, acid-etched enamel without an intermediate bonding agent layer. SBS was tested to failure in a universal testing machine at 0.5 mm/min. Data were analyzed by one-way ANOVA and Fisher's test (α=0.05).The debonded specimens were examined with a stereomicroscope to assess the failure modes. Three representative specimens from each group were observed under scanning electron microscopy for a qualitative analysis. Mean SBS in MPa were: I-12.28 (±4.29); II-8.57 (±3.19); III-7.97 (±2.16); IV-12.56 (±3.11); V-11.45 (±3.77); and VI-7.47 (±1.99). In conclusion, individual or simultaneous curing of the intermediate bonding agent layer and the resin sealant did not seem to affect bond strength to saliva-contaminated enamel. S3/F presented significantly higher SBS than the that of the groups treated with SB etch-and-rinse adhesive system and similar SBS to that of the control group, in which the sealant was applied under ideal dry, noncontaminated conditions.
Resumo:
The aim of the present study was to evaluate the influence of different photopolymerization (halogen, halogen soft-start and LED) systems on shear bond strength (SBS) and marginal microleakage of composite resin restorations. Forty Class V cavities (enamel and dentin margins) were prepared for microleakage assessment, and 160 enamel and dentin fragments were prepared for the SBS test, and divided into 4 groups. Kruskal-Wallis and Wilcoxon tests showed statistically significant difference in microleakage between the margins (p < 0.01) with incisal margins presenting the lowest values. Among the groups, it was observed that, only at the cervical margin, halogen soft-start photo polymerization presented statistically significant higher microleakage values. For SBS test, ANOVA showed no statistical difference (p > 0.05) neither between substrates nor among groups. It was concluded that Soft-Start technique with high intensity end-light influenced negatively the cervical marginal sealing, but the light-curing systems did not influence adhesion.
Resumo:
OBJECTIVE: This study evaluated the influence of light sources and immersion media on the color stability of a nanofilled composite resin. MATERIAL AND METHODS: Conventional halogen, high-power-density halogen and high-power-density light-emitting diode (LED) units were used. There were 4 immersion media: coffee, tea, Coke® and artificial saliva. A total of 180 specimens (10 mm x 2 mm) were prepared, immersed in artificial saliva for 24 h at 37±1ºC, and had their initial color measured with a spectrophotometer according to the CIELab system. Then, the specimens were immersed in the 4 media during 60 days. Data from the color change and luminosity were collected and subjected to statistical analysis by the Kruskall-Wallis test (p<0.05). For immersion time, the data were subjected to two-way ANOVA test and Fisher's test (p<0.05). RESULTS: High-power-density LED (ΔE=1.91) promoted similar color stability of the composite resin to that of the tested halogen curing units (Jet Lite 4000 plus - ΔE=2.05; XL 3000 - ΔE=2.28). Coffee (ΔE=8.40; ΔL=-5.21) showed the highest influence on color stability of the studied composite resin. CONCLUSION: There was no significant difference in color stability regardless of the light sources, and coffee was the immersion medium that promoted the highest color changes on the tested composite resin.