923 resultados para Complex Engineering Systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, we take advantage of association rule mining to support two types of medical systems: the Content-based Image Retrieval (CBIR) systems and the Computer-Aided Diagnosis (CAD) systems. For content-based retrieval, association rules are employed to reduce the dimensionality of the feature vectors that represent the images and to improve the precision of the similarity queries. We refer to the association rule-based method to improve CBIR systems proposed here as Feature selection through Association Rules (FAR). To improve CAD systems, we propose the Image Diagnosis Enhancement through Association rules (IDEA) method. Association rules are employed to suggest a second opinion to the radiologist or a preliminary diagnosis of a new image. A second opinion automatically obtained can either accelerate the process of diagnosing or to strengthen a hypothesis, increasing the probability of a prescribed treatment be successful. Two new algorithms are proposed to support the IDEA method: to pre-process low-level features and to propose a preliminary diagnosis based on association rules. We performed several experiments to validate the proposed methods. The results indicate that association rules can be successfully applied to improve CBIR and CAD systems, empowering the arsenal of techniques to support medical image analysis in medical systems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Immunological systems have been an abundant inspiration to contemporary computer scientists. Problem solving strategies, stemming from known immune system phenomena, have been successfully applied to chall enging problems of modem computing. Simulation systems and mathematical modeling are also beginning use to answer more complex immunological questions as immune memory process and duration of vaccines, where the regulation mechanisms are not still known sufficiently (Lundegaard, Lund, Kesmir, Brunak, Nielsen, 2007). In this article we studied in machina a approach to simulate the process of antigenic mutation and its implications for the process of memory. Our results have suggested that the durability of the immune memory is affected by the process of antigenic mutation.and by populations of soluble antibodies in the blood. The results also strongly suggest that the decrease of the production of antibodies favors the global maintenance of immune memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a practical application of MDA and reverse engineering based on a domain-specific modelling language. A well defined metamodel of a domain-specific language is useful for verification and validation of associated tools. We apply this approach to SIFA, a security analysis tool. SIFA has evolved as requirements have changed, and it has no metamodel. Hence, testing SIFA’s correctness is difficult. We introduce a formal metamodelling approach to develop a well-defined metamodel of the domain. Initially, we develop a domain model in EMF by reverse engineering the SIFA implementation. Then we transform EMF to Object-Z using model transformation. Finally, we complete the Object-Z model by specifying system behavior. The outcome is a well-defined metamodel that precisely describes the domain and the security properties that it analyses. It also provides a reliable basis for testing the current SIFA implementation and forward engineering its successor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical optimisation methods are being more commonly applied to agricultural systems models, to identify the most profitable management strategies. The available optimisation algorithms are reviewed and compared, with literature and our studies identifying evolutionary algorithms (including genetic algorithms) as superior in this regard to simulated annealing, tabu search, hill-climbing, and direct-search methods. Results of a complex beef property optimisation, using a real-value genetic algorithm, are presented. The relative contributions of the range of operational options and parameters of this method are discussed, and general recommendations listed to assist practitioners applying evolutionary algorithms to the solution of agricultural systems. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rectangular piezoceramic transducers are widely used in ultrasonic evaluation and health monitoring techniques and structural vibration control applications. In this paper the flexural waves excited by rectangular transducers adhesively attached to isotropic plates are investigated. In view of the difficulties in developing accurate analytical models describing the transfer characteristics of the transducer due to the complex electromechanical transduction processes and transducer-structure interactions involved, a combined theoretical-experimental approach is developed. A multiple integral transform method is used to describe the propagation behaviour of the waves in the plates, while a heterodyne Doppler laser vibrometer is employed as a non-contact receiver device. This combined theoretical-experimental approach enables the efficient characterization of the electromechanical transfer properties of the piezoelectric transducer which is essential for the development of optimized non-destructive evaluation systems. The results show that the assumption of a uniform contact pressure distribution between the transducer and the plate can accurately predict the frequency spectrum and time domain response signals of the propagating waves along the main axes of the rectangular transmitter element.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarized absorption and emission spectra of trigonal single crystals of an Er(III) complex coordinated to a heptadentate tripodal ligand are reported at temperatures between 8 and 298 K. The assigned energy levels below the onset of ligand absorption (< 25 000 cm(-1)) are fitted to a parametrized electronic Hamiltonian. The C-3 site symmetry of the Er(HI) ion requires eight parameters for a full description of the ligand field within a one-electron operator description. This compound shows unusually large splittings of the multiplets, and the fitted parameters imply that this heptadentate ligand imparts the largest ligand field reported for an Er(III) complex. The ligand field was also interpreted within the angular overlap model (AOM). We derive the AOM matrix to include both sigma and anisotropic pi bonding and show that a useful description of the C-3 ligand field can be made using only five parameters. The success of the AOM description is encouraging for applications on isomorphous complexes within the lanthanide series and in describing the ligand field of low-symmetry complexes with less parameters than in the usual spherical harmonic expansion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eukaryotic phenotypic diversity arises from multitasking of a core proteome of limited size. Multitasking is routine in computers, as well as in other sophisticated information systems, and requires multiple inputs and outputs to control and integrate network activity. Higher eukaryotes have a mosaic gene structure with a dual output, mRNA (protein-coding) sequences and introns, which are released from the pre-mRNA by posttranscriptional processing. Introns have been enormously successful as a class of sequences and comprise up to 95% of the primary transcripts of protein-coding genes in mammals. In addition, many other transcripts (perhaps more than half) do not encode proteins at all, but appear both to be developmentally regulated and to have genetic function. We suggest that these RNAs (eRNAs) have evolved to function as endogenous network control molecules which enable direct gene-gene communication and multitasking of eukaryotic genomes. Analysis of a range of complex genetic phenomena in which RNA is involved or implicated, including co-suppression, transgene silencing, RNA interference, imprinting, methylation, and transvection, suggests that a higher-order regulatory system based on RNA signals operates in the higher eukaryotes and involves chromatin remodeling as well as other RNA-DNA, RNA-RNA, and RNA-protein interactions. The evolution of densely connected gene networks would be expected to result in a relatively stable core proteome due to the multiple reuse of components, implying,that cellular differentiation and phenotypic variation in the higher eukaryotes results primarily from variation in the control architecture. Thus, network integration and multitasking using trans-acting RNA molecules produced in parallel with protein-coding sequences may underpin both the evolution of developmentally sophisticated multicellular organisms and the rapid expansion of phenotypic complexity into uncontested environments such as those initiated in the Cambrian radiation and those seen after major extinction events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare the performance of two different low-storage filter diagonalisation (LSFD) strategies in the calculation of complex resonance energies of the HO2, radical. The first is carried out within a complex-symmetric Lanczos subspace representation [H. Zhang, S.C. Smith, Phys. Chem. Chem. Phys. 3 (2001) 2281]. The second involves harmonic inversion of a real autocorrelation function obtained via a damped Chebychev recursion [V.A. Mandelshtam, H.S. Taylor, J. Chem. Phys. 107 (1997) 6756]. We find that while the Chebychev approach has the advantage of utilizing real algebra in the time-consuming process of generating the vector recursion, the Lanczos, method (using complex vectors) requires fewer iterations, especially for low-energy part of the spectrum. The overall efficiency in calculating resonances for these two methods is comparable for this challenging system. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A scheme is presented to incorporate a mixed potential integral equation (MPIE) using Michalski's formulation C with the method of moments (MoM) for analyzing the scattering of a plane wave from conducting planar objects buried in a dielectric half-space. The robust complex image method with a two-level approximation is used for the calculation of the Green's functions for the half-space. To further speed up the computation, an interpolation technique for filling the matrix is employed. While the induced current distributions on the object's surface are obtained in the frequency domain, the corresponding time domain responses are calculated via the inverse fast Fourier transform (FFT), The complex natural resonances of targets are then extracted from the late time response using the generalized pencil-of-function (GPOF) method. We investigate the pole trajectories as we vary the distance between strips and the depth and orientation of single, buried strips, The variation from the pole position of a single strip in a homogeneous dielectric medium was only a few percent for most of these parameter variations.