847 resultados para Complementary Therapies
Resumo:
Despite considerable success in treatment of early stage localized prostate cancer (PC), acute inadequacy of late stage PC treatment and its inherent heterogeneity poses a formidable challenge. Clearly, an improved understanding of PC genesis and progression along with the development of new targeted therapies are warranted. Animal models, especially, transgenic immunocompetent mouse models, have proven to be the best ally in this respect. A series of models have been developed by modulation of expression of genes implicated in cancer-genesis and progression; mainly, modulation of expression of oncogenes, steroid hormone receptors, growth factors and their receptors, cell cycle and apoptosis regulators, and tumor suppressor genes have been used. Such models have contributed significantly to our understanding of the molecular and pathological aspects of PC initiation and progression. In particular, the transgenic mouse models based on multiple genetic alterations can more accurately address the inherent complexity of PC, not only in revealing the mechanisms of tumorigenesis and progression but also for clinically relevant evaluation of new therapies. Further, with advances in conditional knockout technologies, otherwise embryonically lethal gene changes can be incorporated leading to the development of new generation transgenics, thus adding significantly to our existing knowledge base. Different models and their relevance to PC research are discussed.
Resumo:
The assumption that mesenchymal stromal cell (MSC)-based therapies are capable of augmenting physiological regeneration processes has fostered intensive basic and clinical research activities. However, to achieve sustained therapeutic success in vivo, not only the biological, but also the mechanical microenvironment of MSCs during these regeneration processes needs to be taken into account. This is especially important for e.g., bone fracture repair, since MSCs present at the fracture site undergo significant biomechanical stimulation. This study has therefore investigated cellular characteristics and the functional behaviour of MSCs in response to mechanical loading. Our results demonstrated a reduced expression of MSC surface markers CD73 (ecto-5’-nucleotidase) and CD29 (integrin β1) after loading. On the functional level, loading led to a reduced migration of MSCs. Both effects persisted for a week after the removal of the loading stimulus. Specifi c inhibition of CD73/CD29 demonstrated their substrate dependent involvement in MSC migration after loading. These results were supported by scanning electron microscopy images and phalloidin staining of actin fi laments displaying less cell spreading, lamellipodia formation and actin accumulations. Moreover, focal adhesion kinase and Src-family kinases were identified as candidate downstream targets of CD73/CD29 that might contribute to the mechanically induced decrease in MSC migration. These results suggest that MSC migration is controlled by CD73 CD29, which in turn are regulated by mechanical stimulation of cells. We therefore speculate that MSCs migrate into the fracture site, become mechanically entrapped, and thereby accumulate to fulfil their regenerative functions.
Resumo:
In an Australian context, the term hooning refers to risky driving behaviours such as illegal street racing and speed trials, as well as behaviours that involve unnecessary noise and smoke, which include burn outs, donuts, fish tails, drifting and other skids. Hooning receives considerable negative media attention in Australia, and since the 1990s all Australian jurisdictions have implemented vehicle impoundment programs to deal with the problem. However, there is limited objective evidence of the road safety risk associated with hooning behaviours. Attempts to estimate the risk associated with hooning are limited by official data collection and storage practices, and the willingness of drivers to admit to their illegal behaviour in the event of a crash. International evidence suggests that illegal street racing is associated with only a small proportion of fatal crashes; however, hooning in an Australian context encompasses a broader group of driving behaviours than illegal street racing alone, and it is possible that the road safety risks will differ with these behaviours. There is evidence from North American jurisdictions that vehicle impoundment programs are effective for managing drink driving offenders, and drivers who continue to drive while disqualified or suspended both during and post-impoundment. However, these programs used impoundment periods of 30 – 180 days (depending on the number of previous offences). In Queensland the penalty for a first hooning offence is 48 hours, while the vehicle can be impounded for up to 3 months for a second offence, or permanently for a third or subsequent offence within three years. Thus, it remains unclear whether similar effects will be seen for hooning offenders in Australia, as no evaluations of vehicle impoundment programs for hooning have been published. To address these research needs, this program of research consisted of three complementary studies designed to: (1) investigate the road safety implications of hooning behaviours in terms of the risks associated with the specific behaviours, and the drivers who engage in these behaviours; and (2) assess the effectiveness of current approaches to dealing with the problem; in order to (3) inform policy and practice in the area of hooning behaviour. Study 1 involved qualitative (N = 22) and quantitative (N = 290) research with drivers who admitted engaging in hooning behaviours on Queensland roads. Study 2 involved a systematic profile of a large sample of drivers (N = 834) detected and punished for a hooning offence in Queensland, and a comparison of their driving and crash histories with a randomly sampled group of Queensland drivers with the same gender and age distribution. Study 3 examined the post-impoundment driving behaviour of hooning offenders (N = 610) to examine the effects of vehicle impoundment on driving behaviour. The theoretical framework used to guide the research incorporated expanded deterrence theory, social learning theory, and driver thrill-seeking perspectives. This framework was used to explore factors contributing to hooning behaviours, and interpret the results of the aspects of the research designed to explore the effectiveness of vehicle impoundment as a countermeasure for hooning. Variables from each of the perspectives were related to hooning measures, highlighting the complexity of the behaviour. This research found that the road safety risk of hooning behaviours appears low, as only a small proportion of the hooning offences in Study 2 resulted in a crash. However, Study 1 found that hooning-related crashes are less likely to be reported than general crashes, particularly when they do not involve an injury, and that higher frequencies of hooning behaviours are associated with hooning-related crash involvement. Further, approximately one fifth of drivers in Study 1 reported being involved in a hooning-related crash in the previous three years, which is comparable to general crash involvement among the general population of drivers in Queensland. Given that hooning-related crashes represented only a sub-set of crash involvement for this sample, this suggests that there are risks associated with hooning behaviour that are not apparent in official data sources. Further, the main evidence of risk associated with the behaviour appears to relate to the hooning driver, as Study 2 found that these drivers are likely to engage in other risky driving behaviours (particularly speeding and driving vehicles with defects or illegal modifications), and have significantly more traffic infringements, licence sanctions and crashes than drivers of a similar (i.e., young) age. Self-report data from the Study 1 samples indicated that Queensland’s vehicle impoundment and forfeiture laws are perceived as severe, and that many drivers have reduced their hooning behaviour to avoid detection. However, it appears that it is more common for drivers to have simply changed the location of their hooning behaviour to avoid detection. When the post-impoundment driving behaviour of the sample of hooning offenders was compared to their pre-impoundment behaviour to examine the effectiveness of vehicle impoundment in Study 3, it was found that there was a small but significant reduction in hooning offences, and also for other traffic infringements generally. As Study 3 was observational, it was not possible to control for extraneous variables, and is, therefore, possible that some of this reduction was due to other factors, such as a reduction in driving exposure, the effects of changes to Queensland’s Graduated Driver Licensing scheme that were implemented during the study period and affected many drivers in the offender sample due to their age, or the extension of vehicle impoundment to other types of offences in Queensland during the post-impoundment period. However, there was a protective effect observed, in that hooning offenders did not show the increase in traffic infringements in the post period that occurred within the comparison sample. This suggests that there may be some effect of vehicle impoundment on the driving behaviour of hooning offenders, and that this effect is not limited to their hooning driving behaviour. To be more confident in these results, it is necessary to measure driving exposure during the post periods to control for issues such as offenders being denied access to vehicles. While it was not the primary aim of this program of research to compare the utility of different theoretical perspectives, the findings of the research have a number of theoretical implications. For example, it was found that only some of the deterrence variables were related to hooning behaviours, and sometimes in the opposite direction to predictions. Further, social learning theory variables had stronger associations with hooning. These results suggest that a purely legal approach to understanding hooning behaviours, and designing and implementing countermeasures designed to reduce these behaviours, are unlikely to be successful. This research also had implications for policy and practice, and a number of recommendations were made throughout the thesis to improve the quality of relevant data collection practices. Some of these changes have already occurred since the expansion of the application of vehicle impoundment programs to other offences in Queensland. It was also recommended that the operational and resource costs of these laws should be compared to the road safety benefits in ongoing evaluations of effectiveness to ensure that finite traffic policing resources are allocated in a way that produces maximum road safety benefits. However, as the evidence of risk associated with the hooning driver is more compelling than that associated with hooning behaviour, it was argued that the hooning driver may represent the better target for intervention. Suggestions for future research include ongoing evaluations of the effectiveness of vehicle impoundment programs for hooning and other high-risk driving behaviours, and the exploration of additional potential targets for intervention to reduce hooning behaviour. As the body of knowledge regarding the factors contributing to hooning increases, along with the identification of potential barriers to the effectiveness of current countermeasures, recommendations for changes in policy and practice for hooning behaviours can be made.
Resumo:
Commentary on : Carey JV. Literature review : should antipyretic therapies routinely be administered to patients with [corrected] fever? J Clin Nurs 2010;19:2377–93.
Resumo:
Rapid mineralization of cultured osteoblasts could be a useful characteristic in stem-cell mediated therapies for fracture and other orthopaedic problems. Dimethyl sulfoxide (DMSO) is a small amphipathic solvent molecule capable of simulating cell differentiation. We report that, in primary human osteoblasts, DMSO dose-dependently enhanced the expression of osteoblast differentiation markers alkaline phosphatase (ALP) activity and extracellular matrix mineralization. Furthermore, similar DMSO mediated mineralization enhancement was observed in primary osteoblast-like cells differentiated from mouse mesenchymal cells derived from fat, a promising source of starter cells for cell-based therapy. Using a convenient mouse pre-osteoblast model cell line MC3T3-E1 we further investigated this phenomenon showing that numerous osteoblast-expressed genes were elevated in response to DMSO treatment and correlated with enhanced mineralization. Myocyte enhancer factor 2c (Mef2c) was identified as the transcription factor most induced by DMSO, among numerous DMSO-induced genes, suggesting a role for Mef2c in osteoblast gene regulation. Immunohistochemistry confirmed expression of Mef2c in osteoblast-like cells in mouse mandible, cortical and trabecular bone. shRNAi-mediated Mef2c gene silencing resulted in defective osteoblast differentiation, decreased ALP activity and matrix mineralization and knockdown of osteoblast specific gene expression, including osteocalcin and bone sialoprotein. Flow on knockdown of bone specific transcription factors, Runx2 and osterix by shRNAi knockdown of Mef2c suggests that Mef2c lies upstream of these two important factors in the cascade of gene expression in osteoblasts.
Resumo:
Scaffolds with open-pore morphologies offer several advantages in cell-based tissue engineering, but their use is limited by a low cell seeding efficiency. We hypothesized that inclusion of a collagen network as filling material within the open-pore architecture of polycaprolactone-tricalcium phosphate (PCL-TCP) scaffolds increases human bone marrow stromal cells (hBMSC) seeding efficiency under perfusion and in vivo osteogenic capacity of the resulting constructs. PCL-TCP scaffolds, rapid prototyped with a honeycomb-like architecture, were filled with a collagen gel and subsequently lyophilized, with or without final crosslinking. Collagen-free scaffolds were used as controls. The seeding efficiency was assessed after overnight perfusion of expanded hBMSC directly through the scaffold pores using a bioreactor system. By seeding and culturing freshly harvested hBMSC under perfusion for 3 weeks, the osteogenic capacity of generated constructs was tested by ectopic implantation in nude mice. The presence of the collagen network, independently of the crosslinking process, significantly increased the cell seeding efficiency (2.5-fold), and reduced the loss of clonogenic cells in the supernatant. Although no implant generated frank bone tissue, possibly due to the mineral distribution within the scaffold polymer phase, the presence of a non crosslinked collagen phase led to in vivo formation of scattered structures of dense osteoids. Our findings verify that the inclusion of a collagen network within open morphology porous scaffolds improves cell retention under perfusion seeding. In the context of cell-based therapies, collagen-filled porous scaffolds are expected to yield superior cell utilization, and could be combined with perfusion-based bioreactor devices to streamline graft manufacture.
Resumo:
Major curriculum and assessment reforms in Australia have generated research interest in issues related to standards, teacher judgement and moderation. This article is based on one related inquiry of a large-scale Australian Research Council Linkage project conducted in Queensland. This qualitative study analysed interview data to identify teachers’ views on standards and moderation as a means to achieving consistency of teacher judgement. A complementary aspect of the research involved a blind review that was conducted to determine the degree of teacher consistency without the experience of moderation. Empirical evidence was gained that most teachers, of the total interviewed, articulated a positive attitude towards the use of standards in moderation and perceived that this process produces consistency in teachers’ judgements. Context was identified as an important influential factor in teachers’ judgements and it was concluded that teachers’ assessment beliefs, attitudes and practices impact on their perceptions of the value of moderation practice and the extent to which consistency can be achieved.
Resumo:
Cell based therapies require cells capable of self renewal and differentiation, and a prerequisite is the ability to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies is therefore an integral part of tissue engineering. Bone marrow is the most easily accessible source of mesenchymal stem cells (MSCs), and harbours two distinct populations of adult stem cells; namely hematopoietic stem cells (HSCs) and bone mesenchymal stem cells (BMSCs). Unlike HSCs, there are yet no rigorous criteria for characterizing BMSCs. Changing understanding about the pluripotency of BMSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to BMSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their in vitro study. Also, when BMSCs are cultured in vitro there is a loss of the in vivo microenvironment which results in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage number, characterized by the onset of senescence related changes. Accordingly, establishing protocols for generating large numbers of BMSCs without affecting their differentiation potential is necessary. The principal aims of this thesis were to identify potential molecular factors for characterizing BMSCs from osteoarthritic patients, and also to attempt to establish culture protocols favourable for generating large number of BMSCs, while at the same time retaining their proliferation and differentiation potential. Previously published studies concerning clonal cells have demonstrated that BMSCs are heterogeneous populations of cells at various stages of growth. Some cells are higher in the hierarchy and represent the progenitors, while other cells occupy a lower position in the hierarchy and are therefore more committed to a particular lineage. This feature of BMSCs was made evident by the work of Mareddy et al., which involved generating clonal populations of BMSCs from bone marrow of osteoarthritic patients, by a single cell clonal culture method. Proliferation potential and differentiation capabilities were used to group cells into fast growing and slow growing clones. The study presented here is a continuation of the work of Mareddy et al. and employed immunological and array based techniques to identify the primary molecular factors involved in regulating phenotypic characteristics exhibited by contrasting clonal populations. The subtractive immunization (SI) was used to generate novel antibodies against favourably expressed proteins in the fast growing clonal cell population. The difference between the clonal populations at the transcriptional level was determined using a Stem Cell RT2 Profiler TM PCR Array which focuses on stem cell pathway gene expression. Monoclonal antibodies (mAb) generated by SI were able to effectively highlight differentially expressed antigenic determinants, as was evident by Western blot analysis and confocal microscopy. Co-immunoprecipitation, followed by mass spectroscopy analysis, identified a favourably expressed protein as the cytoskeletal protein vimentin. The stem cell gene array highlighted genes that were highly upregulated in the fast growing clonal cell population. Based on their functions these genes were grouped into growth factors, cell fate determination and maintenance of embryonic and neural stem cell renewal. Furthermore, on a closer analysis it was established that the cytoskeletal protein vimentin and nine out of ten genes identified by gene array were associated with chondrogenesis or cartilage repair, consistent with the potential role played by BMSCs in defect repair and maintaining tissue homeostasis, by modulating the gene expression pattern to compensate for degenerated cartilage in osteoarthritic tissues. The gene array also presented transcripts for embryonic lineage markers such as FOXA2 and Sox2, both of which were significantly over expressed in fast growing clonal populations. A recent groundbreaking study by Yamanaka et al imparted embryonic stem cell (ESCs) -like characteristic to somatic cells in a process termed nuclear reprogramming, by the ectopic expression of the genes Sox2, cMyc and Oct4. The expression of embryonic lineage markers in adult stem cells may be a mechanism by which the favourable behaviour of fast growing clonal cells is determined and suggests a possible active phenomenon of spontaneous reprogramming in fast growing clonal cells. The expression pattern of these critical molecular markers could be indicative of the competence of BMSCs. For this reason, the expression pattern of Sox2, Oct4 and cMyc, at various passages in heterogeneous BMSCs population and tissue derived cells (osteoblasts and chondrocytes), was investigated by a real-time PCR and immunoflourescence staining. A strong nuclear staining was observed for Sox2, Oct4 and cMyc, which gradually weakened accompanied with cytoplasmic translocation after several passage. The mRNA and protein expression of Sox2, Oct4 and cMyc peaked at the third passage for osteoblasts, chondrocytes and third passage for BMSCs, and declined with each subsequent passage, indicating towards a possible mechanism of spontaneous reprogramming. This study proposes that the progressive decline in proliferation potential and multipotentiality associated with increased passaging of BMSCs in vitro might be a consequence of loss of these propluripotency factors. We therefore hypothesise that the expression of these master genes is not an intrinsic cell function, but rather an outcome of interaction of the cells with their microenvironment; this was evident by the fact that when removed from their in vivo microenvironment, BMSCs undergo a rapid loss of stemness after only a few passages. One of the most interesting aspects of this study was the integration of factors in the culture conditions, which to some extent, mimicked the in vivo microenvironmental niche of the BMSCs. A number of studies have successfully established that the cellular niche is not an inert tissue component but is of prime importance. The total sum of stimuli from the microenvironment underpins the complex interplay of regulatory mechanisms which control multiple functions in stem cells most importantly stem cell renewal. Therefore, well characterised factors which affect BMSCs characteristics, such as fibronectin (FN) coating, and morphogens such as FGF2 and BMP4, were incorporated into the cell culture conditions. The experimental set up was designed to provide insight into the expression pattern of the stem cell related transcription factors Sox2, cMyc and Oct4, in BMSCs with respect to passaging and changes in culture conditions. Induction of these pluripotency markers in somatic cells by retroviral transfection has been shown to confer pluripotency and an ESCs like state. Our study demonstrated that all treatments could transiently induce the expression of Sox2, cMyc and Oct4, and favourably affect the proliferation potential of BMSCs. The combined effect of these treatments was able to induce and retain the endogenous nuclear expression of stem cell transcription factors in BMSCs over an extended number of in vitro passages. Our results therefore suggest that the transient induction and manipulation of endogenous expression of transcription factors critical for stemness can be achieved by modulating the culture conditions; the benefit of which is to circumvent the need for genetic manipulations. In summary, this study has explored the role of BMSCs in the diseased state of osteoarthritis, by employing transcriptional profiling along with SI. In particular this study pioneered the use of primary cells for generating novel antibodies by SI. We established that somatic cells and BMSCs have a basal level of expression of pluripotency markers. Furthermore, our study indicates that intrinsic signalling mechanisms of BMSCs are intimately linked with extrinsic cues from the microenvironment and that these signals appear to be critical for retaining the expression of genes to maintain cell stemness in long term in vitro culture. This project provides a basis for developing an “artificial niche” required for reversion of commitment and maintenance of BMSC in their uncommitted homeostatic state.
Resumo:
Background Oxidative stress plays a role in acute and chronic inflammatory disease and antioxidant supplementation has demonstrated beneficial effects in the treatment of these conditions. This study was designed to determine the optimal dose of an antioxidant supplement in healthy volunteers to inform a Phase 3 clinical trial. Methods The study was designed as a combined Phase 1 and 2 open label, forced titration dose response study in healthy volunteers (n = 21) to determine both acute safety and efficacy. Participants received a dietary supplement in a forced titration over five weeks commencing with a no treatment baseline through 1, 2, 4 and 8 capsules. The primary outcome measurement was ex vivo changes in serum oxygen radical absorbance capacity (ORAC). The secondary outcome measures were undertaken as an exploratory investigation of immune function. Results A significant increase in antioxidant activity (serum ORAC) was observed between baseline (no capsules) and the highest dose of 8 capsules per day (p = 0.040) representing a change of 36.6%. A quadratic function for dose levels was fitted in order to estimate a dose response curve for estimating the optimal dose. The quadratic component of the curve was significant (p = 0.047), with predicted serum ORAC scores increasing from the zero dose to a maximum at a predicted dose of 4.7 capsules per day and decreasing for higher doses. Among the secondary outcome measures, a significant dose effect was observed on phagocytosis of granulocytes, and a significant increase was also observed on Cox 2 expression. Conclusion This study suggests that Ambrotose AO® capsules appear to be safe and most effective at a dosage of 4 capsules/day. It is important that this study is not over interpreted; it aimed to find an optimal dose to assess the dietary supplement using a more rigorous clinical trial design. The study achieved this aim and demonstrated that the dietary supplement has the potential to increase antioxidant activity. The most significant limitation of this study was that it was open label Phase 1/Phase 2 trial and is subject to potential bias that is reduced with the use of randomization and blinding. To confirm the benefits of this dietary supplement these effects now need to be demonstrated in a Phase 3 randomised controlled trial (RCT).
Resumo:
Endometrial carcinoma is the most common gynecological malignancy in the United States. Although most women present with early disease confined to the uterus, the majority of persistent or recurrent tumors are refractory to current chemotherapies. We have identified a total of 11 different FGFR2 mutations in 3/10 (30%) of endometrial cell lines and 19/187 (10%) of primary uterine tumors. Mutations were seen primarily in tumors of the endometrioid histologic subtype (18/115 cases investigated, 16%). The majority of the somatic mutations identified were identical to germline activating mutations in FGFR2 and FGFR3 that cause Apert Syndrome, Beare-Stevenson Syndrome, hypochondroplasia, achondroplasia and SADDAN syndrome. The two most common somatic mutations identified were S252W (in eight tumors) and N550K (in five samples). Four novel mutations were identified, three of which are also likely to result in receptor gain-of-function. Extensive functional analyses have already been performed on many of these mutations, demonstrating they result in receptor activation through a variety of mechanisms. The discovery of activating FGFR2 mutations in endometrial carcinoma raises the possibility of employing anti-FGFR molecularly targeted therapies in patients with advanced or recurrent endometrial carcinoma.
Resumo:
The Signal Processing Research Centre (SPRC) at QUT recently formulated an academic strategy plan. This paper describes the various factors that must be considered in undertaking such a planning process. It also illustrates the need for a university research centre to plan for its teaching activities as well as its research activities. Complementary teaching and research are essential to the achievement of the strategic objectives of a university centre.
Resumo:
This paper investigates the use of lip information, in conjunction with speech information, for robust speaker verification in the presence of background noise. It has been previously shown in our own work, and in the work of others, that features extracted from a speaker's moving lips hold speaker dependencies which are complementary with speech features. We demonstrate that the fusion of lip and speech information allows for a highly robust speaker verification system which outperforms the performance of either sub-system. We present a new technique for determining the weighting to be applied to each modality so as to optimize the performance of the fused system. Given a correct weighting, lip information is shown to be highly effective for reducing the false acceptance and false rejection error rates in the presence of background noise
Resumo:
Investigates the use of lip information, in conjunction with speech information, for robust speaker verification in the presence of background noise. We have previously shown (Int. Conf. on Acoustics, Speech and Signal Proc., vol. 6, pp. 3693-3696, May 1998) that features extracted from a speaker's moving lips hold speaker dependencies which are complementary with speech features. We demonstrate that the fusion of lip and speech information allows for a highly robust speaker verification system which outperforms either subsystem individually. We present a new technique for determining the weighting to be applied to each modality so as to optimize the performance of the fused system. Given a correct weighting, lip information is shown to be highly effective for reducing the false acceptance and false rejection error rates in the presence of background noise
Resumo:
The use of visual features in the form of lip movements to improve the performance of acoustic speech recognition has been shown to work well, particularly in noisy acoustic conditions. However, whether this technique can outperform speech recognition incorporating well-known acoustic enhancement techniques, such as spectral subtraction, or multi-channel beamforming is not known. This is an important question to be answered especially in an automotive environment, for the design of an efficient human-vehicle computer interface. We perform a variety of speech recognition experiments on a challenging automotive speech dataset and results show that synchronous HMM-based audio-visual fusion can outperform traditional single as well as multi-channel acoustic speech enhancement techniques. We also show that further improvement in recognition performance can be obtained by fusing speech-enhanced audio with the visual modality, demonstrating the complementary nature of the two robust speech recognition approaches.
Resumo:
This paper describes the cloning and characterization of a new member of the vascular endothelial growth factor (VEGF) gene family, which we have designated VRF for VEGF-related-factor. Sequencing of cDNAs from a human fetal brain library and RT-PCR products from normal and tumor tissue cDNA pools indicate two alternatively spliced messages with open reading frames of 621 and 564 bp, respectively. The predicted proteins differ at their carboxyl ends resulting from a shift in the open reading frame. Both isoforms show strong homology to VEGF at their amino termini, but only the shorter isoform maintains homology to VEGF at its carboxyl terminus and conserves all 16 cysteine residues of VEGF165. Similarity comparisons of this isoform revealed overall protein identity of 48% and conservative substitution of 69% with VEGF189. VRF is predicted to contain a signal peptide, suggesting that it may be a secreted factor. The VRF gene maps to the D11S750 locus at chromosome band 11q13, and the protein coding region, spanning approximately 5 kb, is comprised of 8 exons that range in size from 36 to 431 bp. Exons 6 and 7 are contiguous and the two isoforms of VRF arise through alternate splicing of exon 6. VRF appears to be ubiquitously expressed as two transcripts of 2.0 and 5.5 kb; the level of expression is similar among normal and malignant tissues.