983 resultados para Collision
Resumo:
The double ionization of helium by electron impact for 106 eV incident energy was studied in a kinematically complete experiment by using a reaction microscope. The pattern of the angular correlation of the three emitted electrons was analyzed by selecting different values of the recoil ion longitudinal momentum. The Wannier predicted geometry appears when the recoil ion carries the full initial projectile momentum. It was found that at this low impact energy, the outgoing electrons still remember the initial-state collision information.
Resumo:
Isospin asymmetry is very important in the nuclear equation of state (EOS), isotope yield from the projectile fragments can give information of the reaction process. In this paper projectile fragment yields are measured in the collision Ar-36,Ar-40 + Ni-64 at incident energy 50 MeV/u with different isospin asymmetry project Ar-36,Ar-40, data analysis, particle identification and event selection are described. Isotope yields are compared in these two reactions, and axe also compared with the empirical parametrization of fragmentation cross-section calculated by EPAX.
Resumo:
We improve the isospin dependent quantum molecular dynamical model by including isospin effects in the Skyrme potential and the momentum dependent interaction to obtain an isospin dependent Skyrme potential and an isospin dependent momentum interaction. We investigate the isospin effects of Skyrme potential and momentum dependent interaction on the isospin fractionation ratio and the dynamical mechanism in intermediate energy heavy ion collisions. It is found that the isospin dependent Skyrme potential and the isospin dependent momentum interaction produce some important isospin effects in the isospin fractionation ratio
Resumo:
The collisions of the isocharged sequence ions of q=6 (C6+, N6+, O6+, F6+, Ne6+, Ar6+, and Ca6+), q=7 (F7+, Ne7+, S7+, Ar7+, and Ca7+), q=8 (F8+, Ne8+, Ar8+, and Ca8+), q=9 (F9+, Ne9+, Si9+, S9+, Ar9+, and Ca9+) and q=11 (Si11+, Ar11+, and Ca11+) with helium at the same velocities were investigated. The cross-section ratios of the double-electron transfer (DET) to the single-electron capture (SEC) sigma(DET)/sigma(SEC) and the true double-electron capture (TDC) to the double-electron transfer sigma(TDC)/sigma(DET) were measured. It shows that for different ions in an isocharged sequence, the experimental cross-section ratio sigma(DET)/sigma(SEC) varies by a factor of 3. The results confirm that the projectile core is another dominant factor besides the charge state and the collision velocity in slow (0.35-0.49v(0); v(0) denotes the Bohr velocity) highly charged ions (HCIs) with helium collisions. The experimental cross-section ratio sigma(DET)/sigma(SEC) is compared with the extended classical over-barrier model (ECBM) [A. Barany , Nucl. Instrum. Methods Phys. Res. B 9, 397 (1985)], the molecular Coulombic barrier model (MCBM) [A. Niehaus, J. Phys. B 19, 2925 (1986)], and the semiempirical scaling laws (SSL) [N. Selberg , Phys. Rev. A 54, 4127 (1996)]. It also shows that the projectile core properties affect the initial capture probabilities as well as the subsequent relaxation of the projectiles. The experimental cross-section ratio sigma(TDC)/sigma(DET) for those lower isocharged sequences is dramatically affected by the projectile core structure, while for those sufficiently highly isocharged sequences, the autoionization always dominates, hence the cross-section ratio sigma(TDC)/sigma(DET) is always small.
Resumo:
Influences of the isospin dependence of the in-medium nucleon-nucleon cross section and the momentum-dependant interaction (MDI) on the isotope scaling are investigated by using the isospin-dependent quantum molecular dynamics model (IQMD). The results show that both the isospin dependence of the in-medium nucleon-nucleon cross section and the momentum-dependent interaction affect the isoscaling parameters appreciably and independently. The influence caused by the isospin dependence of two-body collision is relatively larger than that from the MDI in the mean field. Aiming at exploring the implication of isoscaling behaviour, which the statistical equilibrium in the reaction is reached, the statistical properties in the mass distribution and the kinetic energy distribution of the fragments simulated by IQMD are presented.
Resumo:
The direct Coulomb ionization process can be generally well described by the ECPSSR theory, which bases on the perturbed-stationary- state(PSS) and accounts for the energy-loss, Coulomb-deflection, and relativistic effects. But the ECPSSR calculation has significant deviations for heavy projectile at low impinging energies. In this paper we propose a new modified ECPSSR theory, i.e. MECUSAR, in which PSS is replaced by an united and separated atom model, and molecule-orbit effect is considered. The MECUSAR calculations give better agreement with the experimental data at lower impinging energies, and agree with the ECPSSR calculations at high energies. By using OBKN (Oppenheimer-Brinkman-Kramers formulas of Nikolaev) theory to describe the contribution of the electron capture, we further modified the proposed MECUSAR theory, and calculated the target ionization cross sections for different charge states of the projectile.
Resumo:
A new gas delivery system is designed and installed for HIRFL-CSR cluster target. The original blocked nozzle is replaced by a new one with the throat diameter of 0.12mm. New test of hydrogen and argon gases are performed. The stable jets can be obtained for these two operation gases. The attenuation of the jet caused by the collision with residual gas is studied. The maximum achievable H-2 target density is 1.75x10(13) atoms/cm(3) with a target thickness of 6.3x10(12) atoms/cm(2) for HIRFL-CSR cluster target. The running stability of the cluster source is tested both for hydrogen and argon. The operation parameters for obtaining hydrogen jet are optimized. The results of long time running for H-2 and Ar cluster jets look promising. The jet intensity has no essential change during the test for H-2 and Ar.
Resumo:
In order to expand the solid angle for imaging of electrons in ion-atom collisions, we designed a complex Helmholtz coils composed of four single coils. Theoretical simulations were carried out to optimize the arrangement of the coils. The complex is constructed according to the theoretical analysis, and the magnetic fields were measured for interested regions. The measured results show that the relative uniformity of the magnetic fields is +/- 0.6%, which satisfies the requirements of collision experiments.
Resumo:
In this work a study of damage production in gallium nitride via elastic collision process (nuclear energy deposition) and inelastic collision process (electronic energy deposition) using various heavy ions is presented. Ordinary low-energy heavy ions (Fe+ and Mo+ ions of 110 keV), swift heavy ions (Pb-208(27+) ions of 1.1 MeV/u) and slow highly-charged heavy ions (Xen+ ions of 180 keV) were employed in the irradiation. Damage accumulation in the GaN crystal films as a function of ion fluence and temperature was studied with RBS-channeling technique, Raman scattering technique, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). For ordinary low-energy heavy ion irradiation, the temperature dependence of damage production is moderate up to about 413 K resulting in amorphization of the damaged layer. Enhanced dynamic annealing of defects dominates at higher temperatures. Correlation of amorphization with material decomposition and nitrogen bubble formation was found. In the irradiation of swift heavy ions, rapid damage accumulation and efficient erosion of the irradiated layer occur at a rather low value of electronic energy deposition (about 1.3 keV/nm(3)),. which also varies with irradiation temperature. In the irradiation of slow highly-charged heavy ions (SHCI), enhanced amorphization and surface erosion due to potential energy deposition of SHCI was found. It is indicated that damage production in GaN is remarkably more sensitive to electronic energy loss via excitation and ionization than to nuclear energy loss via elastic collisions.
Resumo:
Multi-hit 3-layer delay-line anode (Hexanode) has an increased ability to detect multi-hit events in a collision experiment. Coupled with a pair of micro-channel plates, it can provide position information of the particles even if the particles arrive at the same time or within small time dwell. But it suffers from some ambiguous outputs and signal losses due to timing order and triggering thresholds etc. We have developed a signal reconstruction program to correct those events. After the program correction, the dead time only exists when 2 paxticles arrive at the same time and the same position within a much smaller range. With the combination of Hexanode and the program, the experimental efficiencies will be greatly improved in near threshold double ionization on He collisions.
Resumo:
Based on the molecular Coulombic over barrier model for description of slow ion-atom collisions, the reaction window theory related to projectile velocity is presented briefly. According to the theory, the state-selective differential cross sections of single electron capture in O8+ -H, A(8+) -H, Ar8+-He, Ne10+-He and Ar18+-He collisions at different collision velocities are calculated and compared with experimental results. Calculations are also done for single, double, and triple electron capture in N-15(7+)-Ne collisions at fixed velocity of 0.53 a.u., and are compared with experimental data. It is found that the predictions of the final electronic state distribution of captured electron(s) are in agreement with experimental data, and both theory and experiments show that the widths of the reaction window increase with the projectile velocity. The differential cross sections predicted by the theory are larger for smaller Q-values, vice versa, when compared with experimental data.
Resumo:
In terms of the isospin-dependent quantum molecular dynamics model (IQMD), important isospin effect in the halo-neutron nucleus induced reaction mechanism is. investigated, and consequently, the symmetrical potential form is extracted in the intermediate energy heavy ion collision. Because the interactive potential and in-medium nucleon-nucleon (N-N) cross section in the IQMD model sensitively depend on the density distribution of the colliding system, this type of study is much more based on the extended density distribution with a looser inner nuclear structure of the halo-neutron nucleus. Such a density distribution includes averaged characteristics of the isospin effect of the reaction mechanism and the looser inner nuclear structure. In order to understand clearly the isospin effect of the halo-neutron nucleus induced reaction mechanism, the effects caused by the neutron-halo nucleus and by the stable nucleus with the same mass are compared under the same condition of the incident channel. It is found that in the concerned beam energy region, the ratio of the emitted neutrons and protons and the ratio of the isospin fractionations in the neutron-halo nucleus case are considerably larger than those in the stable nucleus case. Therefore, the information of the symmetry potential in the heavy ion collision can be extracted through such a procedure.
Resumo:
By analyzing the formation mechanism of a supersonic gas jet, a set of equations which describe the atomic beam properties were established. The influence of initial temperature, initial pressure, background gas pressure and pumping speed was discussed in detail. A simulation program was developed based on the equations, and the results under different initial conditions were obtained. The results are in good agreement with the experimental data, and suggest that, in order to get much smaller transverse momentum in collision experiments, it is necessary to lower the initial temperature and the initial pressure of the supersonic gas jet, together with increasing the pumping speed. These results are very instructive for construction of a new generation of cold supersonic gas jets.
Resumo:
An isospin-dependent quantum molecular dynamical model (IQMD) is developed, with the isospin degree of freedom in the momentum-dependent interaction(MDI) included in IQMD, to obtain an isospin- and momentum-dependent interaction (IMDI) in IQMD. We investigate the effect of IMDI on the isospin fractionation ratio and its dynamical mechanism in the intermediate energy heavy ion collisions. It is found that the IMDI induces the significant reductions in the isospin fractionation ratio for all of beam energies, impact parameters, neutron-proton ratios and mass number of colliding systems. However, the strong dependence of isospin fractionation ratio on the symmetrical potential is preserved, with the isospin degree of freedom included in the MDI, i.e. the isospin fractionation ratio is still a good probe for extracting the information about the equation of state of isospin asymmetrical nuclear matter.
Resumo:
Employing the recoil ion momentum spectroscopy we investigate the collision between He2+ and argon atoms. By measuring the recoil longitudinal momentum the energy losses of projectile are deduced for capture reaction channels. It is found that in most cases for single- and double-electron capture, the inner electron in the target atom is removed, the recoil ion is in singly or multiply excited states (hollow ion is formed), which indicates that electron correlation plays an important role in the process. The captured electrons prefer the ground states of the projectile. It is experimentally demonstrated that the average energy losses are directly related to charge transfer and electronic configuration.