850 resultados para Cellulose acetate membranes
Resumo:
Urea is an important nitrogen source for some bromeliad species, and in nature it is derived from the excretion of amphibians, which visit or live inside the tank water. Its assimilation is dependent on the hydrolysis by urease (EC: 3.5.1.5), and although this enzyme has been extensively studied to date, little information is available about its cellular location. In higher plants, this enzyme is considered to be present in the cytoplasm. However, there is evidence that urease is secreted by the bromeliad Vriesea gigantea, implying that this enzyme is at least temporarily located in the plasmatic membrane and cell wall. In this article, urease activity was measured in different cell fractions using leaf tissues of two bromeliad species: the tank bromeliad V. gigantea and the terrestrial bromeliad Ananas comosus (L.) Merr. In both species, urease was present in the cell wall and membrane fractions, besides the cytoplasm. Moreover, a considerable difference was observed between the species: while V. gigantea had 40% of the urease activity detected in the membranes and cell wall fractions, less than 20% were found in the same fractions in A. comosus. The high proportion of urease found in cell wall and membranes in V. gigantea was also investigated by cytochemical detection and immunoreaction assay. Both approaches confirmed the enzymatic assay. We suggest this physiological characteristic allows tank bromeliads to survive in a nitrogen-limited environment, utilizing urea rapidly and efficiently and competing successfully for this nitrogen source against microorganisms that live in the tank water.
Resumo:
Aims: To investigate the effect of N omega-Nitro-L-arginine methyl ester CL-NAME) treatment, known to induce a sustained elevation of blood pressure, on ectonucleotidase activities in kidney membranes of rats. Main methods: L-NAME (30 mg/kg/day) was administered to Wistar rats for 14 days in the drinking water. Enzyme activities were determined colorimetrically and their gene expression patterns were analyzed by semi-quantitative RT-PCR. The metabolism of ATP and the accumulation of adenosine were evaluated by HPLC in kidney membranes from control and hypertensive rats. PKC phosphorylation state was investigated by Western blot. Key findings: We observed an increase in systolic blood pressure from 115 +/- 12 mmHg (control group) to 152 18 mmHg (L-NAME-treated group). Furthermore, the hydrolysis of ATP, ADP, AMP, and p-Nph-5`TMP was also increased (17%, 35%, 27%, 20%, respectively) as was the gene expression of NTPDase2, NTPDase3 and NPP3 in kidneys of hypertensive animals. Phospho-PKC was increased in hypertensive rats. Significance: The general increase in ATP hydrolysis and in ecto-5`-nucleotidase activity suggests a rise in renal adenosine levels and in renal autoregulatory responses in order to protect the kidney against the threat presented by hypertension. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Free fatty acids (FFA) are important mediators of proton transport across membranes. However, information concerning the influence of the Structural features of both FFA and the membrane environment on the proton translocation mechanisms across phospholipid membranes is relatively scant. The effects of FFA chain length, unsaturation and membrane composition on proton transport have been addressed in this study by means of electrical measurements in planar lipid bilayers. Proton conductance (G(H)(+)) was calculated from open-circuit voltage and short-circuit current density measurements. We found that cis-unsaturated FFA caused a more pronounced effect on proton transport as compared to Saturated and trans-unsaturated FFA. Cholesterol and cardiolipin decreased membrane leak conductance. Cardiolipin also decreased proton conductance. These effects indicate a dual modulation of protein-independent proton transport by FFA: through a flip-flop mechanism and by modifying a proton diffusional pathway. Moreover the membrane phospholipid composition was shown to importantly affect both processes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Extracellular signal-regulated kinase (ERK) 1/2 has been reported to play a role in vascular dysfunction associated with mineralocorticoid hypertension. We hypothesized that, compared with female rats, an upregulation of ERK1/2 signaling in the vasculature of male rats contributes to augmented contractile responses in mineralocorticoid hypertension. Uninephrectomized male and female Sprague-Dawley rats received desoxycorticosterone acetate (DOCA) pellets (200 mg per animal) and saline to drink for 3 weeks. Control uninephrectomized rats received tap water to drink. Blood pressure, measured by telemetry, was significantly higher in male DOCA rats (191 +/- 3 mm Hg) compared with female DOCA rats (172 +/- 7 mm Hg; n=5). DOCA treatment resulted in augmented contractile responses to phenylephrine in aorta (22 +/- 3 mN; n=6) and small mesenteric arteries (13 +/- 2 mN; n=6) from male DOCA rats versus uninephrectomized male rats (16 +/- 3 and 10 +/- 2 mN, respectively; P<0.05) and female DOCA rats (15 +/- 1 and 11 +/- 1 mN, respectively). ERK1/2 inhibition with PD-98059 (10 mu mol/L) abrogated increased contraction to phenylephrine in aorta (14 +/- 2 mN) and small mesenteric arteries (10 +/- 2 mN) from male DOCA rats, without any effects in arteries from male uninephrectomized or female animals. Compared with the other groups, phosphorylated ERK1/2 levels were increased in the aorta from male DOCA rats, whereas mitogen-activated protein kinase phosphatase 1 expression was decreased. Interleukin-10 plasma levels, which positively regulate mitogen-activated protein kinase phosphatase 1 activity, were reduced in male DOCA-salt rats. We speculate that augmented vascular reactivity in male hypertensive rats is mediated via activation of the ERK1/2 pathway. In addition, mitogen-activated protein kinase phosphatase 1 and interleukin 10 play regulatory roles in this process. (Hypertension. 2010; 55: 172-179.)
Resumo:
Hyperglycemia, which increases O-linked beta-N-acetylglucosamine (O-GlcNAc) proteins, leads to changes in vascular reactivity. Because vascular dysfunction is a key feature of arterial hypertension, we hypothesized that vessels from deoxycorticosterone acetate and salt (DOCA-salt) rats exhibit increased O-GlcNAc proteins, which is associated with increased reactivity to constrictor stimuli. Aortas from DOCA rats exhibited increased contraction to phenylephrine (E(max) [mN] = 17.6 +/- 4 versus 10.7 +/- 2 control; n = 6) and decreased relaxation to acetylcholine (47.6 +/- 6% versus 73.2 +/- 10% control; n = 8) versus arteries from uninephrectomized rats. O- GlcNAc protein content was increased in aortas from DOCA rats (arbitrary units = 3.8 +/- 0.3 versus 2.3 +/- 0.3 control; n = 5). PugNAc (O- GlcNAcase inhibitor; 100 mu mol/L; 24 hours) increased vascular O- GlcNAc proteins, augmented phenylephrine vascular reactivity (18.2 +/- 2 versus 10.7 +/- 3 vehicle; n = 6), and decreased acetylcholine dilation in uninephrectomized (41.4 +/- 6 versus 73.2 +/- 3 vehicle; n = 6) but not in DOCA rats (phenylephrine, 16.5 +/- 3 versus 18.6 +/- 3 vehicle, n = 6; acetylcholine, 44.7 +/- 8 versus 47.6 +/- 7 vehicle, n = 6). PugNAc did not change total vascular endothelial nitric oxide synthase levels, but reduced endothelial nitric oxide synthase(Ser-1177) and Akt(Ser-473) phosphorylation (P < 0.05). Aortas from DOCA rats also exhibited decreased levels of endothelial nitric oxide synthase(Ser-1177) and Akt(Ser-473) (P < 0.05) but no changes in total endothelial nitric oxide synthase or Akt. Vascular O-GlcNAc-modified endothelial nitric oxide synthase was increased in DOCA rats. Blood glucose was similar in DOCA and uninephrectomized rats. Expression of O- GlcNAc transferase, glutamine: fructose-6-phosphate amidotransferase, and O- GlcNAcase, enzymes that directly modulate O-GlcNAcylation, was decreased in arteries from DOCA rats (P < 0.05). This is the first study showing that O-GlcNAcylation modulates vascular reactivity in normoglycemic conditions and that vascular O- GlcNAc proteins are increased in DOCA-salt hypertension. Modulation of increased vascular O-GlcNAcylation may represent a novel therapeutic approach in mineralocorticoid hypertension. (Hypertension. 2009; 53: 166-174.)
Resumo:
In the last decade, there has been renewed interest in biologically active peptides in fields like allergy, autoimmume diseases and antibiotic therapy. Mast cell degranulating peptides mimic G-protein receptors, showing different activity levels even among homologous peptides. Another important feature is their ability to interact directly with membrane phospholipids, in a fast and concentration-dependent way. The mechanism of action of peptide HR1 on model membranes was investigated comparatively to other mast cell degranulating peptides (Mastoparan, Eumenitin and Anoplin) to evidence the features that modulate their selectivity. Using vesicle leakage, single-channel recordings and zeta-potential measurements, we demonstrated that HR1 preferentially binds to anionic bilayers, accumulates, folds, and at very low concentrations, is able to insert and create membrane spanning ion-selective pores. We discuss the ion selectivity character of the pores based on the neutralization or screening of the peptides charges by the bilayer head group charges or dipoles. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Electroactive nanostructured membranes have been produced by the layer-by-layer (LbL) technique, and used to make electrochemical enzyme biosensors for glucose by modification with cobalt hexacyanoferrate redox mediator and immobilisation of glucose oxidase enzyme. Indium tin oxide (ITO) glass electrodes were modified with up to three bilayers of polyamidoamine (PAMAM) dendrimers containing gold nanoparticles and poly(vinylsulfonate) (PVS). The gold nanoparticles were covered with cobalt hexacyanoferrate that functioned as a redox mediator, allowing the modified electrode to be used to detect H(2)O(2), the product of the oxidase enzymatic reaction, at 0.0 V vs. SCE. Enzyme was then immobilised by cross-linking with glutaraldehyde. Several parameters for optimisation of the glucose biosensor were investigated, including the number of deposited bilayers, the enzyme immobilisation protocol and the concentrations of immobilised enzyme and of the protein that was crosslinked with PAMAM. The latter was used to provide glucose oxidase with a friendly environment, in order to preserve its bioactivity. The optimised biosensor, with three bilayers, has high sensitivity and operational stability, with a detection limit of 6.1 mu M and an apparent Michaelis-Menten constant of 0.20 mM. It showed good selectivity against interferents and is suitable for glucose measurements in natural samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The controlled release of drugs can be efficient if a suitable encapsulation procedure is developed, which requires biocompatible materials to hold and release the drug. In this study, a natural rubber latex (NRL) membrane is used to deliver metronidazole (MET), a powerful antiprotozoal agent. MET was found to be adsorbed on the NRL membrane, with little or no incorporation into the membrane bulk, according to energy dispersive X-ray spectroscopy. X-ray diffraction and FTIR spectroscopy data indicated that MET retained its structural and spectroscopic properties upon encapsulation in the NRL membrane, with no molecular-level interaction that could alter the antibacterial activity of MET. More importantly, the release time of MET in a NRL membrane in vitro was increased from the typical 6-8 h for oral tablets or injections to ca. 100 h. The kinetics of the drug release could be fitted with a double exponential function, with two characteristic times of 3.6 and 29.9 h. This is a demonstration that the induced angiogenesis known to be provided by NRL membranes can be combined with a controlled release of drugs, whose kinetics can be tailored by modifying experimental conditions of membrane fabrication for specific applications. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Evidence of the sorption of the whitening agent sodium 4,4`-distyrylbiphenyl sulfonate in the presence of the anionic surfactant sodium dodecylsulfate or the cationic surfactant dodecyl trimethyl ammonium chloride on regenerated cellulose fibers is given by several microscopy techniques. Scanning electron microscopy provided images of the cylindrical fibers with dimensions of 3.5 cm (length) and 13.3 mu m (thickness), with empty cores of 1 mu m diameter and a smooth surface. Atomic force microscopy showed a fiber surface with disoriented nanometric domains using both tapping-mode height and phase image modes. Atomic force microscopy also showed that the whitening agent and surfactant molecules were sorbed onto the fiber surface, in agreement with the adsolubilization sorption model. Transmission electron microscopy showed fibers with nanometric parallel cylinders, surrounded by holes where the fluorescent whitening molecules accumulated. On the basis of these techniques, we conclude that the sorption process occurs preferentially on the fiber surface in contact with the water solution, and under saturated conditions, the whitening agent penetrates into the pores and are simultaneously sorbed on the pore walls bulk, forming molecular aggregates. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 2321-2327, 2010
Resumo:
We describe the assembly of layer-by-layer films based on the poly(propylene imine) dendrimer (PPID) generation 3 and nickel tetrasulfonated phthalocyanine (NiTsPc) for application as chemically sensitive membranes in sepal alive extended-gate field effect transistor (SEGFET) pH sensors PPID/NiTsPc films wet e adsorbed on quartz, glass. indium tin oxide. or gold (Au)-covered glass substrates Multilayer formation was monitored via UV-vis absorption upon following the increment in the Q-band intensity (615 nm) of NiTsPc The nanostructured membranes were very stable in a pH range of 4-10 and displayed a good sensitivity toward H(+), ca 30 mV/pH for PPID/N(1)TsPc films deposited on Au-covered substrates For films deposited on ITO, the sensitivity was ca 52 4 mV/pH. close to the expected theoretical value for ton-sensitive membranes. The use of chemically stable PPID/NiTsPc films as gate membranes in SEGFETs, as introduced here, may represent an alternative for the fabrication of nanostructured, porous platforms for enzyme immobilization to be used in enzymatic biosensors.
Resumo:
Diacylglycerol acyltransferase 1 (DGAT1) catalyzes the final and dedicated step in the synthesis of triacylglycerol, which is believed to involve the lipids oleoyl coenzyme A (OCoA) and dioleoyl-sn-glycerol (DOG) as substrates. In this work we investigated the interaction of a specific peptide, referred to as SIT2, on the C-terminal of DGAT1 (HKWCIRHFYKP) with model membranes made with OCoA and DOG in Langmuir monolayers and liposomes. According to the circular dichroism and fluorescence data, conformational changes on SIT2 were seen only on liposomes containing OCoA and DOG. In Langmuir monolayers, SIT2 causes the isotherms of neat OCoA and DOG monolayers to be expanded, but has negligible effect on mixed monolayers of OCoA and DOG. This synergistic interaction between SIT2 and DOG + OCoA may be rationalized in terms of a molecular model in which SIT2 may serve as a linkage between the two lipids. Our results therefore provide molecular-level evidence for the interaction between this domain and the substrates OCoA and DOG for the synthesis of triacylglycerol. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The need for biodegradable polymers for packaging has fostered the development of novel, biodegradable polymeric materials from natural sources, as an alternative to reduce amount of waste and environmental impacts. The present investigation involves the synthesis of chitosan nanoparticles-carboxymethylcellulose films, in view of their increasing areas of application in packaging industry. The entire process consists of 2-steps including chitosan nanoparticles preparation and their incorporation in carboxymethylcellulose films. Uniform and stable particles were obtained with 3 different chitosan concentrations. The morphology of chitosan nanoparticles was tested by transmission electron microscopy, revealing the nanoparticles size in the range of 80 to 110 nm. The developed film chitosan nanoparticles-carboxymethylcellulose films were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis, solubility tests, and mechanical analysis. Improvement of thermal and mechanical properties were observed in films containing nanoparticles, with the best results occurring upon addition of nanoparticles with 110 nm size in carboxymethylcellulose films. Practical Application Carboxymethylcellulose films containing chitosan nanoparticles synthesized and characterized in this article could be a potential material for food and beverage packaging applications products due to the increase mechanical properties and high stability. The potential application of the nanocomposites prepared would be in packaging industry to extend the shelf life of products.
Resumo:
Characterization of Sterculia striate polysaccharide (SSP) films adsorbed onto Si wafers from solutions prepared in ethyl methyl imidazolium acetate (EmimAc), water or NaOH 0.01 mol/L was systematically studied by means of ellipsometry, atomic force microscopy and contact angle measurements. SSP adsorbed from EmimAc onto Si wafer as homogeneous monolayers (similar to 0.5 nm thick), while from water or NaOH 0.01 mol/L SSP formed layers of similar to 4.0 nm and similar to 1.5 nm thick, respectively. Surface energy values found for SSP adsorbed from EmimAc or water were 68 +/- 2 mJ/m(2) and 65 +/- 2 mJ/m(2), respectively, whereas from NaOH it amounted to 57 +/- 3 mJ/m(2). The immobilization of lysozyme (LYS) onto SSP films was also investigated. The mean thickness of LYS (d(LYS)) immobilized onto SSP films adsorbed from each solvent tended to increase with the decrease of gamma(P)(S) and gamma(total)(S). However, the enzymatic activity of LYS molecules was higher when they were immobilized onto SSP films with higher gamma(P)(S) and gamma(total)(S) values. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We describe a simple and efficient strategy to fabricate enzymatic devices based on the deposition of glucose oxidase on aligned and highly oriented CoNiMo metallic nanowires. CoNiMo nanowires with an average diameter of 200 nm and length of 50 mu m were electrodeposited on Au-covered alumina substrates via electrodeposition, using alumina membranes as templates. Enzyme-modified electrodes were fabricated via enzyme immobilization using a cross-linker. To minimize nonspecific reactions in the presence of interfering agents, a permselective membrane composed of poly(vinylsulfonic acid) and polyamidoamine dendrimer was deposited via electrostatic interaction. The formation of hydrogen peroxide as a product of the enzymatic reaction was monitored at low overpotential, 0.0 V (vs Ag/AgCl). The detection limit was estimated at 22 mu M under an applied potential of 0.0 V. The apparent Michaelis-Menten constant determined from the Lineweaver-Burke plot was 2 mM.
Resumo:
Thin films of mixtures containing carboxymethylcellulose acetate butyrate (CMCAB) and carbohydrate based surfactant, namely, sorbitan monopalmitate (Span 40) or poly(oxyethylene) sorbitan monopalmitate (Tween 40) were spin-coated onto silicon wafers. The effect of surfactant concentration on resulting film morphology and surface toughness Was Studied by atomic force microscopy (AFM). Upon increasing the concentration of Span 40 in the mixture, films became rougher and more heterogeneous, indicating surface enrichment by Span 40 molecules. In the case of mixtures composed by CMCAB and Tween 40, the increase of Tween 40 in the mixture led to smoother and more homogeneous films, indicating compatibility between both components. Differential scanning calorimetry (DSC) revealed that Span 40 and Tween 40 act as plasticizers for CMCAB, leading to dramatic reduction of glass transition temperature of CMCAB, namely, Delta T(g) = -158 degrees C and Delta T(g)=-179 degrees C. respectively. (C) 2008 Elsevier B.V. All rights reserved.