887 resultados para CONVEX-SETS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove that in some classes of optimization problems, like lower semicontinuous functions which are bounded from below, lower semi-continuous or continuous functions which are bounded below by a coercive function and quasi-convex continuous functions with the topology of the uniform convergence, the complement of the set of well-posed problems is σ-porous. These results are obtained as realization of a theorem extending a variational principle of Ioffe-Zaslavski.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

∗ Research partially supported by INTAS grant 97-1644

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss functions f : X × Y → Z such that sets of the form f (A × B) have non-empty interiors provided that A and B are non-empty sets of second category and have the Baire property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

∗ The work is partially supported by NSFR Grant No MM 409/94.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We give a new construction of uniformly convex norms with a power type modulus on super-reflexive spaces based on the notion of dentability index. Furthermore, we prove that if the Szlenk index of a Banach space is less than or equal to ω (first infinite ordinal) then there is an equivalent weak* lower semicontinuous positively homogeneous functional on X* satisfying the uniform Kadec-Klee Property for the weak*-topology (UKK*). Then we solve the UKK or UKK* renorming problems for Lp(X) spaces and C(K) spaces for K scattered compact space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are concerned with two-level optimization problems called strongweak Stackelberg problems, generalizing the class of Stackelberg problems in the strong and weak sense. In order to handle the fact that the considered two-level optimization problems may fail to have a solution under mild assumptions, we consider a regularization involving ε-approximate optimal solutions in the lower level problems. We prove the existence of optimal solutions for such regularized problems and present some approximation results when the parameter ǫ goes to zero. Finally, as an example, we consider an optimization problem associated to a best bound given in [2] for a system of nondifferentiable convex inequalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The so called “Plural Uncertainty Model” is considered, in which statistical, maxmin, interval and Fuzzy model of uncertainty are embedded. For the last case external and internal contradictions of the theory are investigated and the modified definition of the Fuzzy Sets is proposed to overcome the troubles of the classical variant of Fuzzy Subsets by L. Zadeh. The general variants of logit- and probit- regression are the model of the modified Fuzzy Sets. It is possible to say about observations within the modification of the theory. The conception of the “situation” is proposed within modified Fuzzy Theory and the classifying problem is considered. The algorithm of the classification for the situation is proposed being the analogue of the statistical MLM(maximum likelihood method). The example related possible observing the distribution from the collection of distribution is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* The research is supported partly by INTAS: 04-77-7173 project, http://www.intas.be

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The issues relating fuzzy sets definition are under consideration including the analogue for separation axiom, statistical interpretation and membership function representation by the conditional Probabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For inference purposes in both classical and fuzzy logic, neither the information itself should be contradictory, nor should any of the items of available information contradict each other. In order to avoid these troubles in fuzzy logic, a study about contradiction was initiated by Trillas et al. in [5] and [6]. They introduced the concepts of both self-contradictory fuzzy set and contradiction between two fuzzy sets. Moreover, the need to study not only contradiction but also the degree of such contradiction is pointed out in [1] and [2], suggesting some measures for this purpose. Nevertheless, contradiction could have been measured in some other way. This paper focuses on the study of contradiction between two fuzzy sets dealing with the problem from a geometrical point of view that allow us to find out new ways to measure the contradiction degree. To do this, the two fuzzy sets are interpreted as a subset of the unit square, and the so called contradiction region is determined. Specially we tackle the case in which both sets represent a curve in [0,1]2. This new geometrical approach allows us to obtain different functions to measure contradiction throughout distances. Moreover, some properties of these contradiction measure functions are established and, in some particular case, the relations among these different functions are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prognostic procedures can be based on ranked linear models. Ranked regression type models are designed on the basis of feature vectors combined with set of relations defined on selected pairs of these vectors. Feature vectors are composed of numerical results of measurements on particular objects or events. Ranked relations defined on selected pairs of feature vectors represent additional knowledge and can reflect experts' opinion about considered objects. Ranked models have the form of linear transformations of feature vectors on a line which preserve a given set of relations in the best manner possible. Ranked models can be designed through the minimization of a special type of convex and piecewise linear (CPL) criterion functions. Some sets of ranked relations cannot be well represented by one ranked model. Decomposition of global model into a family of local ranked models could improve representation. A procedures of ranked models decomposition is described in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 30C45, 26A33; Secondary 33C15

Relevância:

20.00% 20.00%

Publicador:

Resumo:

* A preliminary version of this paper was presented at XI Encuentros de Geometr´ia Computacional, Santander, Spain, June 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problems of finding two optimal triangulations of a convex polygon: MaxMin area and MinMax area. These are the triangulations that maximize the area of the smallest area triangle in a triangulation, and respectively minimize the area of the largest area triangle in a triangulation, over all possible triangulations. The problem was originally solved by Klincsek by dynamic programming in cubic time [2]. Later, Keil and Vassilev devised an algorithm that runs in O(n^2 log n) time [1]. In this paper we describe new geometric findings on the structure of MaxMin and MinMax Area triangulations of convex polygons in two dimensions and their algorithmic implications. We improve the algorithm’s running time to quadratic for large classes of convex polygons. We also present experimental results on MaxMin area triangulation.