743 resultados para Building stones.
Resumo:
With the rapid advancement of the webtechnology, more and more educationalresources, including software applications forteaching/learning methods, are available acrossthe web, which enables learners to access thelearning materials and use various ways oflearning at any time and any place. Moreover,various web-based teaching/learning approacheshave been developed during the last decade toenhance the capability of both educators andlearners. Particularly, researchers from bothcomputer science and education are workingtogether, collaboratively focusing ondevelopment of pedagogically enablingtechnologies which are believed to improve theinfrastructure of education systems andprocesses, including curriculum developmentmodels, teaching/learning methods, managementof educational resources, systematic organizationof communication and dissemination ofknowledge and skills required by and adapted tousers. Despite of its fast development, however,there are still great gaps between learningintentions, organization of supporting resources,management of educational structures,knowledge points to be learned and interknowledgepoint relationships such as prerequisites,assessment of learning outcomes, andtechnical and pedagogic approaches. Moreconcretely, the issues have been widelyaddressed in literature include a) availability andusefulness of resources, b) smooth integration ofvarious resources and their presentation, c)learners’ requirements and supposed learningoutcomes, d) automation of learning process interms of its schedule and interaction, and e)customization of the resources and agilemanagement of the learning services for deliveryas well as necessary human interferences.Considering these problems and bearing in mindthe advanced web technology of which weshould make full use, in this report we willaddress the following two aspects of systematicarchitecture of learning/teaching systems: 1)learning objects – a semantic description andorganization of learning resources using the webservice models and methods, and 2) learningservices discovery and learning goals match foreducational coordination and learning serviceplanning.
Resumo:
Addressing building energy use is a pressing issue for building sector decision makers across Europe. In Sweden, some regions have adopted a target of reducing energy use in buildings by 50% until 2050. However, building codes currently do not support as ambitious objectives as these, and novel approaches to addressing energy use in buildings from a regional perspective are called for. The purpose of this licentiate thesis was to provide a deeper understanding of most relevant issues with regard to energy use in buildings from a broad perspective and to suggest pathways towards reaching the long-term savings objective. Current trends in building sector structure and energy use point to detached houses constructed before 1981 playing a key role in the energy transition, especially in the rural areas of Sweden. In the Swedish county of Dalarna, which was used as a study area in this thesis, these houses account for almost 70% of the residential heating demand. Building energy simulations of eight sample houses from county show that there is considerable techno-economic potential for energy savings in these houses, but not quite enough to reach the 50% savings objective. Two case studies from rural Sweden show that savings well beyond 50% are achievable, both when access to capital and use of high technology are granted and when they are not. However, on a broader scale both direct and indirect rebound effects will have to be expected, which calls for more refined approaches to energy savings. Furthermore, research has shown that the techno-economic potential is in fact never realised, not even in the most well-designed intervention programmes, due to the inherent complexity of human behaviour with respect to energy use. This is not taken account of in neither current nor previous Swedish energy use legislation. Therefore an approach that considers the technical prerequisites, economic aspects and the perspective of the many home owners, based on Community-Based Social Marketing methodology, is suggested as a way forward towards reaching the energy savings target.
Resumo:
Recent studies have shown that the optical properties of building exterior surfaces are important in terms of energy use and thermal comfort. While the majority of the studies are related to exterior surfaces, the radiation properties of interior surfaces are less thoroughly investigated. Development in the coil-coating industries has now made it possible to allocate different optical properties for both exterior and interior surfaces of steel-clad buildings. The aim of this thesis is to investigate the influence of surface radiation properties with the focus on the thermal emittance of the interior surfaces, the modeling approaches and their consequences in the context of the building energy performance and indoor thermal environment. The study consists of both numerical and experimental investigations. The experimental investigations include parallel field measurements on three similar test cabins with different interior and exterior surface radiation properties in Borlänge, Sweden, and two ice rink arenas with normal and low emissive ceiling in Luleå, Sweden. The numerical methods include comparative simulations by the use of dynamic heat flux models, Building Energy Simulation (BES), Computational Fluid Dynamics (CFD) and a coupled model for BES and CFD. Several parametric studies and thermal performance analyses were carried out in combination with the different numerical methods. The parallel field measurements on the test cabins include the air, surface and radiation temperatures and energy use during passive and active (heating and cooling) measurements. Both measurement and comparative simulation results indicate an improvement in the indoor thermal environment when the interior surfaces have low emittance. In the ice rink arenas, surface and radiation temperature measurements indicate a considerable reduction in the ceiling-to-ice radiation by the use of low emittance surfaces, in agreement with a ceiling-toice radiation model using schematic dynamic heat flux calculations. The measurements in the test cabins indicate that the use of low emittance surfaces can increase the vertical indoor air temperature gradients depending on the time of day and outdoor conditions. This is in agreement with the transient CFD simulations having the boundary condition assigned on the exterior surfaces. The sensitivity analyses have been performed under different outdoor conditions and surface thermal radiation properties. The spatially resolved simulations indicate an increase in the air and surface temperature gradients by the use of low emittance coatings. This can allow for lower air temperature at the occupied zone during the summer. The combined effect of interior and exterior reflective coatings in terms of energy use has been investigated by the use of building energy simulation for different climates and internal heat loads. The results indicate possible energy savings by the smart choice of optical properties on interior and exterior surfaces of the building. Overall, it is concluded that the interior reflective coatings can contribute to building energy savings and improvement of the indoor thermal environment. This can be numerically investigated by the choice of appropriate models with respect to the level of detail and computational load. This thesis includes comparative simulations at different levels of detail.
Resumo:
The movement of graphics and audio programming towards three dimensions is to better simulate the way we experience our world. In this project I looked to use methods for coming closer to such simulation via realistic graphics and sound combined with a natural interface. I did most of my work on a Dell OptiPlex with an 800 MHz Pentium III processor and an NVIDlA GeForce 256 AGP Plus graphics accelerator -high end products in the consumer market as of April 2000. For graphics, I used OpenGL [1], an open·source, multi-platform set of graphics libraries that is relatively easy to use, coded in C . The basic engine I first put together was a system to place objects in a scene and to navigate around the scene in real time. Once I accomplished this, I was able to investigate specific techniques for making parts of a scene more appealing.