989 resultados para Blatt, Sidney J
Resumo:
A presente invenção refere-se a novos métodos de obtenção de compósitos reabsorvíveis, com base em celulose bacteriana e colágeno, para aplicação em reparação de tecidos, particularmente tecido ósseo. Adicionalmente, a presente invenção refere-se aos compósitos obtidos pelos métodos aqui descritos e seus usos.
Resumo:
The present invention discloses the use of the bacterial cellulose membrane in ligament, tendon and synovial capsule reconstructions according to the methods described in the technical description of the invention. Said material could be used in the reconstruction of ligaments and tendons (the knee cruciate ligaments, patellar ligament, Achilles tendon, quadriceps tendon, etc.) and the synovial capsule.
Resumo:
The present invention relates to novel methods of obtaining reabsorbable composites, based on bacterial cellulose and collagen, for application in tissue repairing Additionally, the present invention relates to the composites obtained by the methods described herein and their uses.
Resumo:
É descrita a invenção de um processo de obtenção de membrana de celulose bacteriana iônica que utiliza membrana de celulose bacteriana como matriz polimérica para obtenção de materiais poliméricos condutores iônicos.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Transparent monoliths and films of urea cross-linked tripodal siloxane-based hybrids (named tri-ureasils) were prepared by the sol-gel process, under controlled atmosphere (inside a glove box) and ambient conditions and their structure and optical features were compared. X-ray diffraction data point out that all the materials are essentially amorphous and Si-29 NMR reveal an increase in the condensation degree (0.97) for the hybrids prepared under controlled atmosphere relatively to that found for those prepared under ambient conditions (0.84-0.91). The tri-ureasils are white light emitters under UV/Visible excitation (from 250 to 453 nm) being observed for the composites prepared inside the glove box a significant enhancement (60-80 %) of the absorption coefficient and higher emission quantum yield values (similar to 0.27 and similar to 0.20 for monoliths and films, respectively) relatively to those synthesized under ambient condition.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The elective ovariohysterectomy (OH) is the most frequent procedures performed in dogs. In this study was used three groups of seven animals each (GI, GII, and GIII) that was undergone to three elective OH techniques: (i) mini-celiotomy (Snook-hook technique), (ii) hybrid Natural Orifice Translumenal Endoscopic Surgery (NOTES), and (iii) celiotomy (conventional surgery). The surgical techniques were compared considering the surgery time, trans and postoperative complications, technical difficulties, postoperative pain, surgical bleedind and some vital parameters as: heart rate (FC), respiratory rate (), rectal temperature, invasive blood pressure (PVI) and central venous pressure (PVC). The OH by hybrid vaginal NOTES was the technique with the lowest post-surgical discomfort score and the lowest surgical bleeding, although its surgical time was higher compared to the conventional and the hook (mini-celiotomy) modalities.
Resumo:
Based on extensive Monte Carlo simulations and analytical considerations we study the electrostatically driven adsorption of flexible polyelectrolyte chains onto charged Janus nanospheres. These net-neutral colloids are composed of two equally but oppositely charged hemispheres. The critical binding conditions for polyelectrolyte chains are analysed as function of the radius of the Janus particle and its surface charge density, as well as the salt concentration in the ambient solution. Specifically for the adsorption of finite-length polyelectrolyte chains onto Janus nanoparticles, we demonstrate that the critical adsorption conditions drastically differ when the size of the Janus particle or the screening length of the electrolyte are varied. We compare the scaling laws obtained for the adsorption-desorption threshold to the known results for uniformly charged spherical particles, observing significant disparities. We also contrast the changes to the polyelectrolyte chain conformations close to the surface of the Janus nanoparticles as compared to those for simple spherical particles. Finally, we discuss experimentally relevant physicochemical systems for which our simulations results may become important. In particular, we observe similar trends with polyelectrolyte complexation with oppositely but heterogeneously charged proteins.
Resumo:
The relentless pursuit for materials containing rare earth ions with photoluminescent properties has led to several studies with applications in the development of new technologies. The main focus of this work is the preparation of Er3+-doped polycrystalline Y2O3 with photoluminescent properties using PEG as an organic precursor and heat-treated at different temperatures. The methodology used in this synthesis is highly attractive due to its high feasibility for improved technology and low cost for preparing materials. The behavior of the viscous resin has been evaluated and the final compounds exhibited the formation of a cubic polycrystalline phase, which is able to support variations in Er3+ doping concentrations up to 10 mol%, without significant changes in the polycrystalline parameters. The values of the nanocrystallite size calculated by Scherrer's equation showed direct dependence on the heat-treatment temperature as well as the Er3+ concentration. Intense emission in the visible region under excitation at 980 nm was attributed to an upconversion phenomenon assigned to the intraconfigurational f-f transitions of Er3+ ions. The upconversion mechanism was investigated and it was demonstrated that the higher intense emission in the red region in comparison to the emission in the green region is related to the crystallite size. The studies about the intensity showed the dependence of upconversion emission of power source, indicating that two-photon are responsible for the green and red photoluminescence. These polycrystalline materials exhibit properties that make them promising for use in solar energy systems, C-telecom band or solid-state laser devices. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)