988 resultados para Avatar, 3D, Kinect


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radiation loss in the escaping light cone with a two-dimensional (2D) photonic crystal slab microcavity can be suppressed by means of cladding the low-Q slab microcavity by three-dimensional woodpile photonic crystals with the complete bandgap when the resonance frequency is located inside the complete bandgap. It is confirmed that the hybrid microcavity based on a low-Q, single-defect photonic crystal slab microcavity shows improvement of the Q factor without affecting the mode volume and modal frequency. Whereas 2D slab microcavities exhibit Q saturation with an increase in the number of layers, for the analyzed hybrid microcavities with a small gap between the slab and woodpiles, the Q factor does not saturate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Capable of three-dimensional imaging of the cornea with micrometer-scale resolution, spectral domain-optical coherence tomography (SDOCT) offers potential advantages over Placido ring and Scheimpflug photography based systems for accurate extraction of quantitative keratometric parameters. In this work, an SDOCT scanning protocol and motion correction algorithm were implemented to minimize the effects of patient motion during data acquisition. Procedures are described for correction of image data artifacts resulting from 3D refraction of SDOCT light in the cornea and from non-idealities of the scanning system geometry performed as a pre-requisite for accurate parameter extraction. Zernike polynomial 3D reconstruction and a recursive half searching algorithm (RHSA) were implemented to extract clinical keratometric parameters including anterior and posterior radii of curvature, central cornea optical power, central corneal thickness, and thickness maps of the cornea. Accuracy and repeatability of the extracted parameters obtained using a commercial 859nm SDOCT retinal imaging system with a corneal adapter were assessed using a rigid gas permeable (RGP) contact lens as a phantom target. Extraction of these parameters was performed in vivo in 3 patients and compared to commercial Placido topography and Scheimpflug photography systems. The repeatability of SDOCT central corneal power measured in vivo was 0.18 Diopters, and the difference observed between the systems averaged 0.1 Diopters between SDOCT and Scheimpflug photography, and 0.6 Diopters between SDOCT and Placido topography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to characterize the image quality of our dedicated, quasi-monochromatic spectrum, cone beam breast imaging system under scatter corrected and non-scatter corrected conditions for a variety of breast compositions. CT projections were acquired of a breast phantom containing two concentric sets of acrylic spheres that varied in size (1-8mm) based on their polar position. The breast phantom was filled with 3 different concentrations of methanol and water, simulating a range of breast densities (0.79-1.0g/cc); acrylic yarn was sometimes included to simulate connective tissue of a breast. For each phantom condition, 2D scatter was measured for all projection angles. Scatter-corrected and uncorrected projections were then reconstructed with an iterative ordered subsets convex algorithm. Reconstructed image quality was characterized using SNR and contrast analysis, and followed by a human observer detection task for the spheres in the different concentric rings. Results show that scatter correction effectively reduces the cupping artifact and improves image contrast and SNR. Results from the observer study indicate that there was no statistical difference in the number or sizes of lesions observed in the scatter versus non-scatter corrected images for all densities. Nonetheless, applying scatter correction for differing breast conditions improves overall image quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enteroendocrine cell is the cornerstone of gastrointestinal chemosensation. In the intestine and colon, this cell is stimulated by nutrients, tastants that elicit the perception of flavor, and bacterial by-products; and in response, the cell secretes hormones like cholecystokinin and peptide YY--both potent regulators of appetite. The development of transgenic mice with enteroendocrine cells expressing green fluorescent protein has allowed for the elucidation of the apical nutrient sensing mechanisms of the cell. However, the basal secretory aspects of the enteroendocrine cell remain largely unexplored, particularly because a complete account of the enteroendocrine cell ultrastructure does not exist. Today, the fine ultrastructure of a specific cell can be revealed in the third dimension thanks to the invention of serial block face scanning electron microscopy (SBEM). Here, we bridged confocal microscopy with SBEM to identify the enteroendocrine cell of the mouse and study its ultrastructure in the third dimension. The results demonstrated that 73.5% of the peptide-secreting vesicles in the enteroendocrine cell are contained within an axon-like basal process. We called this process a neuropod. This neuropod contains neurofilaments, which are typical structural proteins of axons. Surprisingly, the SBEM data also demonstrated that the enteroendocrine cell neuropod is escorted by enteric glia--the cells that nurture enteric neurons. We extended these structural findings into an in vitro intestinal organoid system, in which the addition of glial derived neurotrophic factors enhanced the development of neuropods in enteroendocrine cells. These findings open a new avenue of exploration in gastrointestinal chemosensation by unveiling an unforeseen physical relationship between enteric glia and enteroendocrine cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simultaneous neural recordings taken from multiple areas of the rodent brain are garnering growing interest due to the insight they can provide about spatially distributed neural circuitry. The promise of such recordings has inspired great progress in methods for surgically implanting large numbers of metal electrodes into intact rodent brains. However, methods for localizing the precise location of these electrodes have remained severely lacking. Traditional histological techniques that require slicing and staining of physical brain tissue are cumbersome, and become increasingly impractical as the number of implanted electrodes increases. Here we solve these problems by describing a method that registers 3-D computerized tomography (CT) images of intact rat brains implanted with metal electrode bundles to a Magnetic Resonance Imaging Histology (MRH) Atlas. Our method allows accurate visualization of each electrode bundle's trajectory and location without removing the electrodes from the brain or surgically implanting external markers. In addition, unlike physical brain slices, once the 3D images of the electrode bundles and the MRH atlas are registered, it is possible to verify electrode placements from many angles by "re-slicing" the images along different planes of view. Further, our method can be fully automated and easily scaled to applications with large numbers of specimens. Our digital imaging approach to efficiently localizing metal electrodes offers a substantial addition to currently available methods, which, in turn, may help accelerate the rate at which insights are gleaned from rodent network neuroscience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray mammography has been the gold standard for breast imaging for decades, despite the significant limitations posed by the two dimensional (2D) image acquisitions. Difficulty in diagnosing lesions close to the chest wall and axilla, high amount of structural overlap and patient discomfort due to compression are only some of these limitations. To overcome these drawbacks, three dimensional (3D) breast imaging modalities have been developed including dual modality single photon emission computed tomography (SPECT) and computed tomography (CT) systems. This thesis focuses on the development and integration of the next generation of such a device for dedicated breast imaging. The goals of this dissertation work are to: [1] understand and characterize any effects of fully 3-D trajectories on reconstructed image scatter correction, absorbed dose and Hounsifeld Unit accuracy, and [2] design, develop and implement the fully flexible, third generation hybrid SPECT-CT system capable of traversing complex 3D orbits about a pendant breast volume, without interference from the other. Such a system would overcome artifacts resulting from incompletely sampled divergent cone beam imaging schemes and allow imaging closer to the chest wall, which other systems currently under research and development elsewhere cannot achieve.

The dependence of x-ray scatter radiation on object shape, size, material composition and the CT acquisition trajectory, was investigated with a well-established beam stop array (BSA) scatter correction method. While the 2D scatter to primary ratio (SPR) was the main metric used to characterize total system scatter, a new metric called ‘normalized scatter contribution’ was developed to compare the results of scatter correction on 3D reconstructed volumes. Scatter estimation studies were undertaken with a sinusoidal saddle (±15° polar tilt) orbit and a traditional circular (AZOR) orbit. Clinical studies to acquire data for scatter correction were used to evaluate the 2D SPR on a small set of patients scanned with the AZOR orbit. Clinical SPR results showed clear dependence of scatter on breast composition and glandular tissue distribution, otherwise consistent with the overall phantom-based size and density measurements. Additionally, SPR dependence was also observed on the acquisition trajectory where 2D scatter increased with an increase in the polar tilt angle of the system.

The dose delivered by any imaging system is of primary importance from the patient’s point of view, and therefore trajectory related differences in the dose distribution in a target volume were evaluated. Monte Carlo simulations as well as physical measurements using radiochromic film were undertaken using saddle and AZOR orbits. Results illustrated that both orbits deliver comparable dose to the target volume, and only slightly differ in distribution within the volume. Simulations and measurements showed similar results, and all measured dose values were within the standard screening mammography-specific, 6 mGy dose limit, which is used as a benchmark for dose comparisons.

Hounsfield Units (HU) are used clinically in differentiating tissue types in a reconstructed CT image, and therefore the HU accuracy of a system is very important, especially when using non-traditional trajectories. Uniform phantoms filled with various uniform density fluids were used to investigate differences in HU accuracy between saddle and AZOR orbits. Results illustrate the considerably better performance of the saddle orbit, especially close to the chest and nipple region of what would clinically be a pedant breast volume. The AZOR orbit causes shading artifacts near the nipple, due to insufficient sampling, rendering a major portion of the scanned phantom unusable, whereas the saddle orbit performs exceptionally well and provides a tighter distribution of HU values in reconstructed volumes.

Finally, the third generation, fully-suspended SPECT-CT system was designed in and developed in our lab. A novel mechanical method using a linear motor was developed for tilting the CT system. A new x-ray source and a custom made 40 x 30 cm2 detector were integrated on to this system. The SPECT system was nested, in the center of the gantry, orthogonal to the CT source-detector pair. The SPECT system tilts on a goniometer, and the newly developed CT tilting mechanism allows ±15° maximum polar tilting of the CT system. The entire gantry is mounted on a rotation stage, allowing complex arbitrary trajectories for each system, without interference from the other, while having a common field of view. This hybrid system shows potential to be used clinically as a diagnostic tool for dedicated breast imaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Team NAVIGATE aims to create a robust, portable navigational aid for the blind. Our prototype uses depth data from the Microsoft Kinect to perform realtime obstacle avoidance in unfamiliar indoor environments. The device augments the white cane by performing two signi cant functions: detecting overhanging objects and identifying stairs. Based on interviews with blind individuals, we found a combined audio and haptic feedback system best for communicating environmental information. Our prototype uses vibration motors to indicate the presence of an obstacle and an auditory command to alert the user to stairs ahead. Through multiple trials with sighted and blind participants, the device was successful in detecting overhanging objects and approaching stairs. The device increased user competency and adaptability across all trials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se busca generar una discusión sobre el proceso de diseño y sistematización de una experiencia de aula en la cual se integra el Ambiente de Geometría Dinámica (AGD) Cabri 3D en el aprendizaje de la transformación de rotación en el espacio. En nuestra propuesta, encontramos investigaciones importantes en didáctica de las matemáticas que han puesto en evidencia las dificultades que los estudiantes presentan comúnmente en la exploración de propiedades de los objetos geométricos en el espacio, e incluso la representación de los mismos en él. Por lo cual, la comunicación se apoya en una aproximación instrumental que busca dar cuenta del papel mediador de Cabri 3D como un instrumento construido por el sujeto en el contexto de aprendizaje de la geometría. La propuesta se basa en el diseño de una situación didáctica en la que se integra el AGD Cabri 3D; hemos introducido una categoría que caracteriza el objeto matemático a movilizar en la secuencia de situaciones didácticas, esta categoría es la transformación de rotación en el espacio. La primera caracterización debe darse desde el reconocimiento de la Geometría transformacional como una alternativa para que los estudiantes construyan conocimiento del espacio a partir de la exploración y actuación sobre el mismo, así en la propuesta de la secuencia didáctica se tomara en consideración que la transformación de rotación posibilita la exploración de aspectos complejos tales como el sentido, la magnitud angular y la invarianza de propiedades. Esta última (la invarianza de propiedades) es uno de los aspectos más importante que se deberán distinguir en el diseño de la secuencia didáctica; en la composición de rotaciones por ejemplo, se reconoce como importante que los estudiantes tengan la capacidad de poder determinar cuáles objetos geométricos, puestos en juego en la transformación, conservan sus propiedades, así como poder determinar dentro de la rotación qué se conserva invariante. La segunda caracterización es el reconocimiento de la visualización como medio para que el estudiante interprete la información gráfica de conceptos matemáticos que se le presentan, con el fin de resolver un problema y realizar conjeturas acerca de la noción matemática que está trabajando. La pregunta central para animar la discusión en torno a nuestra comunicación es la siguiente: ¿Cómo influye el uso de Cabri 3D en el estudio del espacio y la exploración de la noción de transformación de rotación en el espacio?, ¿En la organización de la clase y los dispositivos que se deben implementar en la misma?

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of a cell stability MHD model like MHD-Valdis is to help locate the busbars around the cell in a way which leads to the generation of a magnetic field inside the cell that itself leads to a stable cell operation. Yet as far as the cell stability is concerned, the uniformity of the current density in the metal pad is also extremely important and can only be achieved with a correct busbar network sizing. This work compares the usage of a detailed ANSYS based 3D thermo-electric model with the one of the versatile 1D part of MHD-Valdis to help design a well balanced busbar network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper details the prototyping of a novel three axial micro probe based on utilisation of piezoelectric sensors and actuators for true three dimensional metrology and measurements at micro- and nanometre scale. Computational mechanics is used first to model and simulate the performance of the conceptual design of the micro-probe. Piezoelectric analysis is conducted to understand performance of three different materials - silicon, glassy carbon, and nickel - and the effect of load parameters (amplitude, frequency, phase angle) on the magnitude of vibrations. Simulations are also used to compare several design options for layout of the lead zirconium titanate (PZT) sensors and to identify the most feasible from fabrication point of view design. The material options for the realisation of the device have been also tested. Direct laser machining was selected as the primary means of production. It is found that a Yb MOPA based fiber laser was capable of providing the necessary precision on glassy carbon (GC), although machining trials on Si and Ni were less successful due to residual thermal effects.To provide the active and sensing elements on the flexures of the probe, PZT thick films are developed and deposited at low temperatures (Lt720 degC) allowing a high quality functional ceramic to be directly integrated with selected materials. Characterisation of the materials has shown that the film has a homogenous and small pore microstructure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano-imprint forming (NIF) as manufacturing technology is ideally placed to enable high resolution, low-cost and high-throughput fabrication of three-dimensional fine structures and the packaging of heterogeneous micro-systems (S.Y. Chou and P.R. Krauss, 1997). This paper details a thermo-mechanical modelling methodology for optimising this process for different materials used in components such as mini-fluidics and bio-chemical systems, optoelectronics, photonics and health usage monitoring systems (HUMS). This work is part of a major UK Grand Challenge project - 3D-Mintegration - which is aiming to develop modelling and design technologies for the next generation of fabrication, assembly and test processes for 3D-miniaturised systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3D time-dependent model of the VAR process has been developed using CFD techniques. The model solves the coupled field equations for fluid flow, heat transfer (including phase change) and electromagnetic field, for both the electrode and the ingot. The motion of the electic arc 'preferred spot' can be specified based on observations. Correlations are sought between the local gap height, resulting from instantaneous liquid pool surface shape and electrode tip shape, and the arc motion. The detailed behaviour of the melting film on the electrode tip is studies using a spectral free surface technique, which allows investigation of the drops' detachment and drip shorts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A project within a computing department at the University of Greenwich, has been carried out to identify whether podcasting can be used to help understanding and learning of a subject (3D Animation). We know that the benefits of podcasting in education (HE) can be justified, [1]; [2]; [3]; [4]; [5]; [6] and that some success has been proven, but this paper aims to report the results of a term-long project that provided podcast materials for students to help support their learning using Xserve and Podcast Producer technology. Findings in a previous study [6] identified podcasting as a way to diversify learning and provde a more personalised learning experience for students, as well as being able to provide access to a greater mix of learning styles [7]. Finally this paper aims to present the method of capture and distribution, the methodologies of the study, analysis of results, and conclusions that relate to podcasting and enhanced supported learning.