948 resultados para Automatic water level recorder (AWLR)
Resumo:
This synthesis dataset contains records of freshwater peat and lake sediments from continental shelves and coastal areas. Information included is site location (when available), thickness and description of terrestrial sediments as well as underlying and overlying sediments, dates (when available), and references.
Resumo:
The Florida Everglades has a long history of anthropogenic changes which have impacted the quantity and quality of water entering the system. Since the construction of Tamiami Trail in the 1920's, overland flow to the Florida Everglades has decreased significantly, impacting ecosystems from the wetlands to the estuary. The MIKE Marsh Model of Everglades National Park (M3ENP) is a numerical model, which simulates Everglades National Park (ENP) hydrology using MIKE SHE/MIKE 11software. This model has been developed to determine the parameters that effect Everglades hydrology and understand the impact of specific flow changes on the hydrology of the system. As part of the effort to return flows to the historical levels, several changes to the existing water management infrastructure have been implemented or are in the design phase. Bridge construction scenarios were programed into the M3ENP model to review the effect of these structural changes and evaluate the potential impacts on water levels and hydroperiods in the receiving Northeast Shark Slough ecosystem. These scenarios have shown critical water level increases in an area which has been in decline due to low water levels. Results from this work may help guide future decisions for restoration designs. Excess phosphorus entering Everglades National Park in South Florida may promote the growth of more phosphorus-opportunistic species and alter the food chain from the bottom up. Two phosphorus transport methods were developed into the M3ENP hydrodynamic model to determine the factors affecting phosphorus transport and the impact of bridge construction on water quality. Results showed that while phosphorus concentrations in surface waters decreased overall, some areas within ENP interior may experience an increase in phosphorus loading which the addition of bridges to Tamiami Trail. Finally, phosphorus data and modeled water level data was used to evaluate the spectral response of Everglades vegetation to increasing phosphorus availability using Landsat imagery.
Resumo:
Samoylov Island is centrally located within the Lena River Delta at 72° N, 126° E and lies within the Siberian zone of continuous permafrost. The landscape on Samoylov Island consists mainly of late Holocene river terraces with polygonal tundra, ponds and lakes, and an active floodplain. The island has been the focus of numerous multidisciplinary studies since 1993, which have focused on climate, land cover, ecology, hydrology, permafrost and limnology. This paper aims to provide a framework for future studies by describing the characteristics of the island's meteorological parameters (temperature, radiation and snow cover), soil temperature, and soil moisture. The land surface characteristics have been described using high resolution aerial images in combination with data from ground-based observations. Of note is that deeper permafrost temperatures have increased between 0.3 to 1.3 °C over the last five years. However, no clear warming of air and active layer temperatures is detected since 1998, though winter air temperatures during recent years have not been as cold as in earlier years.
Resumo:
Rivers represent a transition zone between terrestric and aquatic environments, and between methane rich and methane poor environments. The Elbe River is one of the important rivers draining into the North Sea and with the Elbe potentially high amounts of methane could be imported into the water column of the North Sea. Twelve cruises from October 2010 until June 2013 were conducted from Hamburg towards the Elbe mouth at Cuxhaven. The dynamic of methane concentration in the water column and its consumption via methane oxidation was measured. In addition, physico-chemical parameters were used to estimate their influence on the methanotrophic activity. We observed high methane concentrations at the stations in the area of Hamburg harbor ("inner estuary") and about 10 times lower concentrations in the outer estuary (median of 416 versus 40 nmol/L). The methane oxidation (MOX) rate mirrowed the methane distribution with high values in the inner estuary and low values in the outer estuary (median of 161 versus 10 nmol/L/d respectively) Methane concentrations were significantly influenced by the river hydrology (falling water level) and the trophic state of the water (biological oxygen demand). In contrast to other studies no clear relation to the amount of suspendended particulate matter (SPM) was found. Methane oxidation rates were significantly influenced by methane concentration and to a weaker extent by temperature. Methane oxidation accounted for 41 ± 12% of the total loss of methane in summer/fall, but only for 5 ± 3% of the total loss in winter/spring. We applied a modified box model taking into account the residence times of a water parcel depending on discharge and tidal impact. We observed almost stable methane concentrations in the outer estuary, despite a strong loss of methane through diffusion and oxidation. Thus we postulate that in the outer Elbe estuary a strong additional input of methane is required, which could be provided by the extensive salt marshes near the river mouth.
Resumo:
The chemical composition of surface associated metabolites of two Fucus species (Fucus vesiculosus and Fucus serratus) was analysed by means of gas chromatography-mass spectrometry (GC-MS) to describe temporal patterns in chemical surface composition. Method: The two perennial brown macroalgae F. vesiculosus and F. serratus were sampled monthly at Bülk, outer Kiel Fjord, Germany (54°27'21 N / 10°11'57 E) over an entire year (August 2012 - July 2013). Per month and species six non-fertile Fucus individuals were collected from mixed stands at a depth of 0.5 m under mid water level. For surface extraction approx. 50 g of the upper 5-10 cm apical thalli tips were cut off per species. The surface extraction of Fucus was performed according to the protocol of de Nys and co-workers (1998) with minor modifications (see Rickert et al. 2015). GC/EI-MS measurements were performed with a Waters GCT premier (Waters, Manchester, UK) coupled to an Agilent 6890N GC equipped with a DB-5 ms 30 m column (0.25 mm internal diameter, 0.25 mM film thickness, Agilent, USA). The inlet temperature was maintained at 250°C and samples were injected in split 10 mode. He carrier gas flow was adjusted to 1 ml min-1. Alkanes were used for referencing of retention times. For further details (GC-MS sample preparation and analysis) see the related publication (Rickert et al. submitted to PLOS ONE).
Resumo:
In the Tromper Wiek northeast of Rügen, acoustical investigations using Air Gun, Boomer, Chirp Sonar and Sediment-Echosounder were carried out. Together with sediment core information, it allowed the identification of five seismostratigraphic units (E1 to E5). Conventional and AMS-14C-datings supported their chronostratigraphical classification. The uppermost till (E1) was incised by late glacial channels filled with glaciolacustrine sediments (E2) of the early Baltic Ice Lake stages. These were regionally overlain with a sharp unconformity by a thick (locally >20 m) sedimentary complex (E3) of acoustically laminated silts of freshwater origin. This lower part of the E3-complex (E3a) is overlain by fluvial to coastal silty fine sands (E3b) deeper towards the Arkona Basin. Fine plant debris in the uppermost part of sub-unit E3a yielded ages of 10,100 and 10,500 14C-years B.P., representing the final phase of the Baltic Ice Lake. The fine sands of sub-unit E3b were deposited after the final drainage of the Baltic Ice Lake. In the shallower central part of the bay, the silts of sub-unit E3a were covered by a younger unit (E4) of fine sand with plant debris. A sedge peat occurring at the basis of unit E4 yielded an age of 9,590 14C-years B.P. The fine sands overlying the unit E3 in the central part of Tromper Wiek were deposited in the Ancylus Lake. Their position at about 20 m below present sea level (b.s.l.) reflects the maximum highstand in this area. The character and distribution of the Early Holocene deposits at greater depth suggest a lake water level at about 30 m b.s.l. after this highstand. Below 25 m b.s.l. muddy Littorina Sea sediments are observed. The thickness of these muds and sandy muds increases gradually towards the Arkona Basin. Locally, they are found in a channel-like structure immediately north of Jasmund.
Resumo:
Magnetic susceptibility (MS) was measured with high resolution (5 mm) on a 9 m long, 14C dated core from Lake Le Bourget (Savoie, France), spanning the last 7200 years. The strong correlation (R=0.85) of the MS with the silicate-borne suite of elements (Si, Al, Fe, Mg, K) and anti-correlation with the carbonate content (R =-0.87) allows it to be used as a proxy for the fluctuations of the abundance of riverborne clastic fraction versus authigenic carbonates in sediment. As the Rhône is the only river bringing a significant amount of silicate minerals to the coring site, the MS downstream is interpreted as a proxy of the Rhône suspended load discharge in Lake Le Bourget. This is confirmed over the last 3000 years by the good match with the evolution of hydrological activity of the Rhône as it is known through geomorphological studies of well-dated archaeological sites. Over the last 7200 years, the record is consistent with the regional record of lake water-level fluctuations. While the intensity of the MS signal might be widely affected by the human impact on soil stability, the timing of the period of enhanced hydrological activity appears to be mostly climate-related, and should thus constitute a first step toward a high-resolution (< 8 yr) continuous history of hydrological conditions in the NW Alps.
Resumo:
In Semarang City, groundwater has been exploited as a natural resource since 1841. The groundwater exploited in deep wells is concentrated in confined aquifers. The previous hydrogeological model was developed in one unit of aquifer and refined then by using several hydrostratigraphical units following a regional hydrogeological map without any further analysis. At present, there is a lack of precise hydrogeological model which integrates geological and hydrogeological data, in particular for multiple aquifers in Semarang. Thus, the aim of this paper is to develop a hydrogeological model for the multiple aquifers in Semarang using an integrated data approach. Groundwater samples in the confined aquifers have been analyzed to define the water type and its lateral distribution. Two hydrogeological cross sections were then created based on several borelog data to define a hydrostratigraphical unit (HSU). The HSU result indicates the hydrogeological model of Semarang consists of two aquifers, three aquitards, and one aquiclude. Aquifer 1 is unconfined, while Aquifer 2 is confined. Aquifer 2 is classified into three groups (2a, 2b, and 2c) based on analyses of major ion content and hydrostratigraphical cross sections.
Resumo:
From 1974 to 1982 repeated tracer tests using fluorescent dyes were carried out in the highly glaciated drainage basin of Vernagtbach. These tests enabled the quantitative determination of the runoff in the forefield of the Vernagtferner, the calculation of travel times of the stream water and estimations of the relative contributions to the entire runoff originating from individual streams. In addition, tracer tests were carried out in the firn area of the glacier resulting in data concerning the storage and travel time of meltwater inside the glacier.