947 resultados para Arc shaped stator induction machine
Resumo:
Experimentally observed, results are presented for the DCarcplasmajets and theirarc-rootbehaviors generated atreduced gas pressure and without or with an' applied magnetic field. Pure argon, argon -hydrogen or argon-nitrogen mixture is used as the plasma-forming gas. A specially designed copper mirror is constructed and used for better observing the arc-root behavior on the anode surface of the DC non-transferred arcplasma torch. It is shown that for the cases without applied magnetic field, the laminar plasmajets are stable and approximately axisymmetrical. The arc-root attachment on the anode surface is completely diffusive when argon is used as the plasma-forming gas, while the arc-root attachment often becomes constrictive when hydrogen or nitrogen is added into the argon. When an external magnetic field is applied, the arcroot tends to rotate along the anode surface of the non-transferred arcplasma torch.
Resumo:
18 p.
Resumo:
In recent years, stable and long laminarplasma jets have been successfully generated, and thus it is possible to achieve low-noise working surroundings, better process repeatability and controllability, and reduced metal-oxidation degree in plasma materials processing. With such a recent development in thermal plasma science and technology as the main research background, modeling studies are performed concerning the DCarcplasmatorch for generating the long laminar argon plasma jet. Two different two-dimensional modeling approaches are employed to deal with the arc-root attachment at the anode surface. The first approach is based on circumferentially uniform arc-root attachment, while the second uses the so-called fictitious anode method. Modeling results show that the highest temperature and maximum axial-velocity at the plasmatorch exit are ~15000 K and ~1100 m/s, respectively, for the case with arc current of 160 A and argon flow rate of 1.95×10{sup}(-4)kg/s.
Resumo:
En este proyecto se analiza y compara el comportamiento del algoritmo CTC diseñado por el grupo de investigación ALDAPA usando bases de datos muy desbalanceadas. En concreto se emplea un conjunto de bases de datos disponibles en el sitio web asociado al proyecto KEEL (http://sci2s.ugr.es/keel/index.php) y que han sido ya utilizadas con diferentes algoritmos diseñados para afrontar el problema de clases desbalanceadas (Class imbalance problem) en el siguiente trabajo: A. Fernandez, S. García, J. Luengo, E. Bernadó-Mansilla, F. Herrera, "Genetics-Based Machine Learning for Rule Induction: State of the Art, Taxonomy and Comparative Study". IEEE Transactions on Evolutionary Computation 14:6 (2010) 913-941, http://dx.doi.org/10.1109/TEVC.2009.2039140 Las bases de datos (incluidas las muestras del cross-validation), junto con los resultados obtenidos asociados a la experimentación de este trabajo se pueden encontrar en un sitio web creado a tal efecto: http://sci2s.ugr.es/gbml/. Esto hace que los resultados del CTC obtenidos con estas muestras sean directamente comparables con los obtenidos por todos los algoritmos obtenidos en este trabajo.