975 resultados para Antenna Bandwidth
Resumo:
The optimization of the pilot overhead in wireless fading channels is investigated, and the dependence of this overhead on various system parameters of interest (e.g., fading rate, signal-to-noise ratio) is quantified. The achievable pilot-based spectral efficiency is expanded with respect to the fading rate about the no-fading point, which leads to an accurate order expansion for the pilot overhead. This expansion identifies that the pilot overhead, as well as the spectral efficiency penalty with respect to a reference system with genie-aided CSI (channel state information) at the receiver, depend on the square root of the normalized Doppler frequency. It is also shown that the widely-usedblock fading model is a special case of more accurate continuous fading models in terms of the achievable pilot-based spectral efficiency. Furthermore, it is established that the overhead optimization for multiantenna systems is effectively the same as for single-antenna systems with thenormalized Doppler frequency multiplied by the number of transmit antennas.
Resumo:
This project focuses on studying and testing the benefits of the NX Remote Desktop technology in administrative use for Finnish Meteorological Institutes existing Linux Terminal Service Project environment. This was done due to the criticality of the system caused by growing number of users as the Linux Terminal Service Project system expands. Although many of the supporting tasks can be done via Secure Shell connection, testing graphical programs or desktop behaviour in such a way is impossible. At first basic technologies behind the NX Remote Desktop were studied, and after that started the testing of two possible programs, FreeNX and NoMachine NX server. Testing the functionality and bandwidth demands were first done in a closed local area network, and results were studied. The better candidate was then installed in a virtual server simulating actual Linux Terminal Service Project server at Finnish Meteorological Institute and connection from Internet was tested to see was there any problems with firewalls and security policies. The results are reported in this study. Studying and testing the two different candidates of NX Remote Desktop showed, that NoMachine NX Server provides better customer support and documentation. Security aspects of the Finnish Meteorological Institute had also to be considered, and since updates along with the new developing tools are announced in next version of the program, this version was the choice. Studies also show that even NoMachine promises a swift connection over an average of 20Kbit/s bandwidth, at least double of that is needed. This project gives an overview of available remote desktop products along their benefits. NX Remote Desktop technology is studied, and installation instructions are included. Testing is done in both, closed and the actual environment and problems and suggestions are studied and analyzed. The installation to the actual LTSP server is not yet made, but a virtual server is put up in the same place in the view of network topology. This ensures, that if the administrators are satisfied with the system, installation and setting up the system will go as described in this report.
Resumo:
The olfactory system of Drosophila has become an attractive and simple model to investigate olfaction because it follows the same organizational principles of vertebrates, and the results can be directly applied to other insects with economic and sanitary relevance. Here, we review the structural elements of the Drosophila olfactory reception organs at the level of the cells and molecules involved. This article is intended to reflect the structural basis underlying the functional variability of the detection of an olfactory universe composed of thousands of odors. At the genetic level, we further detail the genes and transcription factors (TF) that determine the structural variability. The fly's olfactory receptor organs are the third antennal segments and the maxillary palps, which are covered with sensory hairs called sensilla. These sensilla house the odorant receptor neurons (ORNs) that express one or few odorant receptors in a stereotyped pattern regulated by combinations of TF. Also, perireceptor events, such as odor molecules transport to their receptors, are carried out by odorant binding proteins. In addition, the rapid odorant inactivation to preclude saturation of the system occurs by biotransformation and detoxification enzymes. These additional events take place in the lymph that surrounds the ORNs. We include some data on ionotropic and metabotropic olfactory transduction, although this issue is still under debate in Drosophila.
Resumo:
Objective: Although 24-hour arterial blood pressure can be monitored in a free-moving animal using pressure telemetric transmitter mostly from Data Science International (DSI), accurate monitoring of 24-hour mouse left ventricular pressure (LVP) is not available because of its insufficient frequency response to a high frequency signal such as the maximum derivative of mouse LVP (LVdP/dtmax and LVdP/dtmin). The aim of the study was to develop a tiny implantable flow-through LVP telemetric transmitter for small rodent animals, which can be potentially adapted for human 24 hour BP and LVP accurate monitoring. Design and Method: The mouse LVP telemetric transmitter (Diameter: _12 mm, _0.4 g) was assembled by a pressure sensor, a passive RF telemetry chip, and to a 1.2F Polyurethane (PU) catheter tip. The device was developed in two configurations and compared with existing DSI system: (a) prototype-I: a new flow-through pressure sensor with wire link and (b) prototype-II: prototype-I plus a telemetry chip and its receiver. All the devices were applied in C57BL/6J mice. Data are mean_SEM. Results: A high frequency response (>100 Hz) PU heparin saline-filled catheter was inserted into mouse left ventricle via right carotid artery and implanted, LV systolic pressure (LVSP), LVdP/dtmax, and LVdP/dtmin were recorded on day2, 3, 4, 5, and 7 in conscious mice. The hemodynamic values were consistent and comparable (139_4 mmHg, 16634_319, - 12283_184 mmHg/s, n¼5) to one recorded by a validated Pebax03 catheter (138_2mmHg, 16045_443 and -12112_357 mmHg/s, n¼9). Similar LV hemodynamic values were obtained with Prototype-I. The same LVP waveforms were synchronically recorded by Notocord wire and Senimed wireless software through prototype-II in anesthetized mice. Conclusion: An implantable flow-through LVP transmitter (prototype-I) is generated for LVP accurate assessment in conscious mice. The prototype-II needs a further improvement on data transmission bandwidth and signal coupling distance to its receiver for accurate monitoring of LVP in a freemoving mouse.
Resumo:
AbstractPurpose: to evaluate the tolerability, comfort and precision of the signal transmission of an ocular Sensor used for 24-hour intraocular pressure fluctuation monitoring in humans.Patients and methods: In this uncontrolled open trial involving 10 healthy volunteers an 8.7 mm radius prototype ocular telemetry Sensor (SENSIMED Triggerfish®, Lausanne, Switzerland) and an orbital bandage containing a loop antenna were applied and connected to a portable recorder after full eye examination. Best corrected visual acuity and position, surface wetting ability and mobility of the Sensor were assessed after 5 and 30 minutes, 4, 12 and 24 hours. Subjective wearing comfort was scored and activities documented in a logbook. After Sensor removal a full eye examination was repeated and the recorded signal analyzed.Results: The comfort score was high and did not fluctuate significantly over time. The mobility of the Sensor was limited across follow-up visits and its surface wetting ability remained good. Best corrected visual acuity was significantly reduced during Sensor wear and immediately after its removal (from 1.07 before, to 0.85 after, P-value 0.008). Three subjects developed a mild, transient corneal abrasion. In all but one participant we obtained usable data of a telemetric signal recording with sufficient sensitivity to depict ocular pulsation.Conclusions: This 24-hour- trial has encouraging results on the tolerability and functionality of the ocular telemetric Sensor for intraocular pressure fluctuation monitoring. Further studies with different Sensor radii conducted on a larger study population are needed to improve comfort, precision and interpretation of the telemetric signal.
Resumo:
For the standard kernel density estimate, it is known that one can tune the bandwidth such that the expected L1 error is within a constant factor of the optimal L1 error (obtained when one is allowed to choose the bandwidth with knowledge of the density). In this paper, we pose the same problem for variable bandwidth kernel estimates where the bandwidths are allowed to depend upon the location. We show in particular that for positive kernels on the real line, for any data-based bandwidth, there exists a densityfor which the ratio of expected L1 error over optimal L1 error tends to infinity. Thus, the problem of tuning the variable bandwidth in an optimal manner is ``too hard''. Moreover, from the class of counterexamples exhibited in the paper, it appears thatplacing conditions on the densities (monotonicity, convexity, smoothness) does not help.
Resumo:
Pineus boerneri Annand, 1928 (Hemiptera, Adelgidae) _ a new species to Brazil: morphology of eggs, nymphs and adults. Pineus boerneri represents the first Adelgidae species recorded in Brazil. This aphid species forms extensive colonies on branches and trunk of Pinus spp., with apterous oviparous females, eggs and nymphs covered with white wax. The aim of this research is to study the morphology of eggs, nymphs, and adults to provide useful data for species identification in order to solve taxonomic issues. The study was based on morphometric data and optical and scanning electron microscopy images. First instar nymphs are active and can be easily distinguished from the others by their elongate minute yellowish body; well developed legs bearing a pair of sensorial setae at the apex of the second tarsomere; and antenna with three segments with a large rhinarium and distinct apical setae on the last segment. From the second to the fourth instar, nymphs are sessile, with round red body; they loose the third antennal segment and its sensorial structures, as well as the setae on the second tarsomere. The oviparous female is reddish-brown, with round body with about 0.76 mm diameter; legs reduced; antennae one-segmented; ovipositor distinct; numerous wax glands are present, mainly on the head. Accurate characterization of the species and distinction of the nymphal instars of P. boerneri were made possible by canonical analysis of morphometric data and morphological characters.
Resumo:
We continue the development of a method for the selection of a bandwidth or a number of design parameters in density estimation. We provideexplicit non-asymptotic density-free inequalities that relate the $L_1$ error of the selected estimate with that of the best possible estimate,and study in particular the connection between the richness of the classof density estimates and the performance bound. For example, our methodallows one to pick the bandwidth and kernel order in the kernel estimatesimultaneously and still assure that for {\it all densities}, the $L_1$error of the corresponding kernel estimate is not larger than aboutthree times the error of the estimate with the optimal smoothing factor and kernel plus a constant times $\sqrt{\log n/n}$, where $n$ is the sample size, and the constant only depends on the complexity of the family of kernels used in the estimate. Further applications include multivariate kernel estimates, transformed kernel estimates, and variablekernel estimates.
Resumo:
Termite societies are structured by individuals that can be grouped into castes and instars. The development of these instars in most species occurs in irregular patterns and sometimes is distinguished subcastes in physical systems that originate polymorphic soldiers and workers. In this study, we characterized the morphological diversity of castes of apterous in Nasutitermes corniger. We collected four colonies of N. corniger, one every three months between May 2011 and February 2012. Individuals of the nest were separated into groups: larval stages, workers and presoldiers and soldiers. A morphometric analysis was performed on individuals from each group based on head width, metatibia, antenna, and thorax length. The data were submitted to discriminant analysis to confirm different morphological types inside these groups. The apterous line of N. corniger is composed of one first larval instar and two second larval instar. The workers caste has two lines of development with four instars in a larger line and three instars in a lower line. Two morphological types were identified in presoldiers and soldiers. The pattern of castes was similar to other species of the genus, in which bifurcation into two lines of workers, one smaller and one larger occurs after the first molt.
Resumo:
OBJECTIVE. The purpose of this study was to improve the blood-pool signal-to-noise ratio (SNR) and blood-myocardium contrast-to-noise ratio (CNR) of slow-infusion 3-T whole-heart coronary MR angiography (MRA).SUBJECTS AND METHODS. In 2D sensitivity encoding (SENSE), the number of acquired k-space lines is reduced, allowing less radiofrequency excitation per cardiac cycle and a longer TR. The former can be exploited for signal enhancement with a higher radiofrequency excitation angle, and the latter leads to noise reduction due to lower data-sampling bandwidth. Both effects contribute to SNR gain in coronary MRA when spatial and temporal resolution and acquisition time remain identical. Numeric simulation was performed to select the optimal 2D SENSE pulse sequence parameters and predict the SNR gain. Eleven patients underwent conventional unenhanced and the proposed 2D SENSE contrast-enhanced coronary MRA acquisition. Blood-pool SNR, blood-myocardium CNR, visible vessel length, vessel sharpness, and number of side branches were evaluated.RESULTS. Consistent with the numeric simulation, using 2D SENSE in contrast-enhanced coronary MRA resulted in significant improvement in aortic blood-pool SNR (unenhanced vs contrast-enhanced, 37.5 +/- 14.7 vs 121.3 +/- 44.0; p < 0.05) and CNR (14.4 +/- 6.9 vs 101.5 +/- 40.8; p < 0.05) in the patient sample. A longer length of left anterior descending coronary artery was visualized, but vessel sharpness, coronary artery coverage, and image quality score were not improved with the proposed approach.CONCLUSION. In combination with contrast administration, 2D SENSE was found effective in improving SNR and CNR in 3-T whole-heart coronary MRA. Further investigation of cardiac motion compensation is necessary to exploit the SNR and CNR advantages and to achieve submillimeter spatial resolution.
Resumo:
Photosystem II (PSII) of oxygenic photosynthesis is susceptible to photoinhibition. Photoinhibition is defined as light induced damage resulting in turnover of the D1 protein subunit of the reaction center of PSII. Both visible and ultraviolet (UV) light cause photoinhibition. Photoinhibition induced by UV light damages the oxygen evolving complex (OEC) via absorption of UV photons by the Mn ion(s) of OEC. Under visible light, most of the earlier hypotheses assume that photoinhibition occurs when the rate of photon absorption by PSII antenna exceeds the use of the absorbed energy in photosynthesis. However, photoinhibition occurs at all light intensities with the same efficiency per photon. The aim of my thesis work was to build a model of photoinhibition that fits the experimental features of photoinhibition. I studied the role of electron transfer reactions of PSII in photoinhibition and found that changing the electron transfer rate had only minor influence on photoinhibition if light intensity was kept constant. Furthermore, quenching of antenna excitations protected less efficiently than it would protect if antenna chlorophylls were the only photoreceptors of photoinhibition. To identify photoreceptors of photoinhibition, I measured the action spectrum of photoinhibition. The action spectrum showed resemblance to the absorption spectra of Mn model compounds suggesting that the Mn cluster of OEC acts as a photoreceptor of photoinhibition under visible light, too. The role of Mn in photoinhibition was further supported by experiments showing that during photoinhibition OEC is damaged before electron transfer activity at the acceptor side of PSII is lost. Mn enzymes were found to be photosensitive under visible and UV light indicating that Mn-containing compounds, including OEC, are capable of functioning as photosensitizers both in visible and UV light. The experimental results above led to the Mn hypothesis of the mechanism of continuous-light-induced photoinhibition. According to the Mn hypothesis, excitation of Mn of OEC results in inhibition of electron donation from OEC to the oxidized primary donor P680+ both under UV and visible light. P680 is oxidized by photons absorbed by chlorophyll, and if not reduced by OEC, P680+ may cause harmful oxidation of other PSII components. Photoinhibition was also induced with intense laser pulses and it was found that the photoinhibitory efficiency increased in proportion to the square of pulse intensity suggesting that laser-pulse-induced photoinhibition is a two-photon reaction. I further developed the Mn hypothesis suggesting that the initial event in photoinhibition under both continuous and pulsed light is the same: Mn excitation that leads to the inhibition of electron donation from OEC to P680+. Under laser-pulse-illumination, another Mn-mediated inhibitory photoreaction occurs within the duration of the same pulse, whereas under continuous light, secondary damage is chlorophyll mediated. A mathematical model based on the Mn hypothesis was found to explain photoinhibition under continuous light, under flash illumination and under the combination of these two.
Resumo:
Waveform-based tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of electrical properties in near-surface environments with unprecedented spatial resolution. A critical issue with waveform inversion is the a priori unknown source signal. Indeed, the estimation of the source pulse is notoriously difficult but essential for the effective application of this method. Here, we explore the viability and robustness of a recently proposed deconvolution-based procedure to estimate the source pulse during waveform inversion of crosshole georadar data, where changes in wavelet shape with location as a result of varying near-field conditions and differences in antenna coupling may be significant. Specifically, we examine whether a single, average estimated source current function can adequately represent the pulses radiated at all transmitter locations during a crosshole georadar survey, or whether a separate source wavelet estimation should be performed for each transmitter gather. Tests with synthetic and field data indicate that remarkably good tomographic reconstructions can be obtained using a single estimated source pulse when moderate to strong variability exists in the true source signal with antenna location. Only in the case of very strong variability in the true source pulse are tomographic reconstructions clearly improved by estimating a different source wavelet for each transmitter location.
Resumo:
This PhD thesis addresses the issue of scalable media streaming in large-scale networking environments. Multimedia streaming is one of the largest sink of network resources and this trend is still growing as testified by the success of services like Skype, Netflix, Spotify and Popcorn Time (BitTorrent-based). In traditional client-server solutions, when the number of consumers increases, the server becomes the bottleneck. To overcome this problem, the Content-Delivery Network (CDN) model was invented. In CDN model, the server copies the media content to some CDN servers, which are located in different strategic locations on the network. However, they require heavy infrastructure investment around the world, which is too expensive. Peer-to-peer (P2P) solutions are another way to achieve the same result. These solutions are naturally scalable, since each peer can act as both a receiver and a forwarder. Most of the proposed streaming solutions in P2P networks focus on routing scenarios to achieve scalability. However, these solutions cannot work properly in video-on-demand (VoD) streaming, when resources of the media server are not sufficient. Replication is a solution that can be used in these situations. This thesis specifically provides a family of replication-based media streaming protocols, which are scalable, efficient and reliable in P2P networks. First, it provides SCALESTREAM, a replication-based streaming protocol that adaptively replicates media content in different peers to increase the number of consumers that can be served in parallel. The adaptiveness aspect of this solution relies on the fact that it takes into account different constraints like bandwidth capacity of peers to decide when to add or remove replicas. SCALESTREAM routes media blocks to consumers over a tree topology, assuming a reliable network composed of homogenous peers in terms of bandwidth. Second, this thesis proposes RESTREAM, an extended version of SCALESTREAM that addresses the issues raised by unreliable networks composed of heterogeneous peers. Third, this thesis proposes EAGLEMACAW, a multiple-tree replication streaming protocol in which two distinct trees, named EAGLETREE and MACAWTREE, are built in a decentralized manner on top of an underlying mesh network. These two trees collaborate to serve consumers in an efficient and reliable manner. The EAGLETREE is in charge of improving efficiency, while the MACAWTREE guarantees reliability. Finally, this thesis provides TURBOSTREAM, a hybrid replication-based streaming protocol in which a tree overlay is built on top of a mesh overlay network. Both these overlays cover all peers of the system and collaborate to improve efficiency and low-latency in streaming media to consumers. This protocol is implemented and tested in a real networking environment using PlanetLab Europe testbed composed of peers distributed in different places in Europe.
Resumo:
RESUM Un transmissor d’AM (modulació per amplitud), utilitza una de les moltes tècniques de modulació existents avui en dia. És molta la importància que té la modulació de senyals i aquests en són alguns exemples: -Facilita la propagació del senyal per cable o per aire. -Ordena l’espectre, distribuint Canals a les diferents informacions. -Disminueix la dimensió de les antenes. -Optimitza l’ample de banda de cada canal. -Evita interferències entre Canals. -Protegeix la informació de les degradacions per soroll. -Defineix la qualitat de la informació transmesa. L’objectiu principal d’aquest treball, serà realitzar un transmissor d’AM utilitzant components electrònics disponibles al mercat. Això es realitzarà mitjançant diversos procediments de disseny. Es realitzarà un procediment de disseny teòric, tot utilitzant els “datasheets” dels diferents components. Es realitzarà un procediment de disseny mitjançant la simulació, gràcies al qual es podrà provar el disseny del dispositiu i realitzar-ne algunes parts impossibles a reproduir teòricament. I finalment es realitzarà el dispositiu a la pràctica. Entre les conclusions més rellevants obtingudes en aquest treball, voldríem destacar la importància de la simulació per poder dissenyar circuits de radiofreqüència. En aquest treball s’ha demostrat que gràcies a una bona simulació, el primer prototip de dispositiu creat ens ha funcionat a la perfecció. D’altre banda, també comentar la importància d’un disseny adequat d’antena per poder aprofitar al màxim el rendiment del nostre dispositiu. Per concloure, la realització d’un aparell transmissor aporta unes nocions equilibrades d’electrònica i telecomunicacions importants per al disseny de dispositius de comunicació.
Resumo:
We report millimetre-wave continuum observations of the X-ray binaries Cygnus X-3, SS 433, LSI+61 303, Cygnus X-1 and GRS 1915+105. The observations were carried out with the IRAM 30 m-antenna at 250 GHz (1.25 mm) from 1998 March 14 to March 20. These millimetre measurements are complemented with centimetre observations from the Ryle Telescope, at 15 GHz (2.0 cm) and from the Green Bank Interferometer at 2.25 and 8.3 GHz (13 and 3.6 cm). Both Cygnus X-3 and SS 433 underwent moderate flaring events during our observations, whose main spectral evolution properties are described and interpreted. A significant spectral steepening was observed in both sources during the flare decay, that is likely to be caused by adiabatic expansion, inverse Compton and synchrotron losses. Finally, we also report 250 GHz upper limits for three additional undetected X-ray binary stars: LSI+65 010, LSI+61 235 and X Per.