996 resultados para Annaberg (Germany : Landkreis). K. Realgymnasium
Resumo:
A chimeric channel, 4N/1, was generated from two outwardly rectifying K+ channels by linking the N-terminal cytoplasmic domain of hKv1.4 (N terminus ball and chain of hKv1.4) with the transmembrane body of hKvl.l (Delta 78N1 construct of hKvl.l). The recombinant channel has properties similar to the six transmembrane inward rectifiers and opens on hyperpolarization with a threshold of activation at -90 mV. Outward currents are seen on depolarization provided the channel is first exposed to a hyperpolarizing pulse of -100mV or more. Hyperpolarization at and beyond -130mV provides evidence of channel deactivation. Delta 78N1 does not show inward currents on hyperpolarization but does open on depolarizing from -80mV with characteristics similar to native hKvl.l. The outward currents seen in both Delta 78N1 and 4N/1 inactivate slowly at rates consistent with C-type inactivation. The inward rectification of the 4N/1 chimera is consistent with the inactivation gating mechanism. This implies that the addition of the N-terminus from hKv1.4 to hKvl.l shifts channel activation to hyperpolarizing potentials. These results suggest a mechanism involving the N-terminal cytoplasmic domain for conversion of outward rectifiers to inward rectifiers. (C) 1999 Lippincott Williams & Wilkins.
Resumo:
Thermodynamic properties of Li3N dissolved in the molten LiCl salt at 900 K were explored using electrochemical methods. It was difficult to determine precisely the decomposition voltage of Li3N dissolved in the molten salt by cyclic voltammetry. The oxidation wave of N3– ion could not be located with high accuracy. However, the lithium activity of the Pb-Li alloy in equilibrium with the molten salt containing dissolved Li3N under nitrogen atmosphere could be measured electrochemically with high accuracy using the Li/Li + reference electrode. Under the conditions used in this study, the potential of the Li-Pb electrode is equal to the decomposition voltage of Li3N. The activity of Li3N in molten LiCl was determined for anionic fractions of N3– ranging from xN3– = 10–4 to 0.028. The nitride ion concentration in the salt was determined by chemical titration. The activity coefficient of the Li3N at high dilution was found to be very low, around 10–4. The activity coefficient increases sharply with composition and has a value of 0.25 at xN3– = 0.028. ©2001 The Electrochemical Society. All rights reserved.
Resumo:
We have analyzed the stability of various oxides of K and find that K(2)O(2) is the most stable one. The additional stability is traced to the presence of oxygen dimers in K(2)O(2) which interact to form molecular orbitals. Other oxides such as KO(2) and KO(3) which also have dimers/trimers of oxygens are found to be less stable. This is traced to the shorter O-O bonds that one finds in them which gives rise to a significant coulomb repulsion between the electrons on the oxygen atoms making up the dimer/trimer, making them less stable.
Resumo:
A (k-, K) circuit is one which can be decomposed into nonintersecting blocks of gates where each block has no more than K external inputs, such that the graph formed by letting each block be a node and inserting edges between blocks if they share a signal line, is a partial k-tree. (k, K) circuits are special in that they have been shown to be testable in time polynomial in the number of gates in the circuit, and are useful if the constants k and K are small. We demonstrate a procedure to synthesise (k, K) circuits from a special class of Boolean expressions.
Resumo:
Deposition of durable thin film coatings by vacuum evaporation on acrylic substrates for optical applications is a challenging job. Films crack upon deposition due to internal stresses and leads to performance degradation. In this investigation, we report the preparation and characterization of single and multi-layer films of TiO2, CeO2, Substance2 (E Merck, Germany), Al2O3, SiO2 and MgF2 by electron beam evaporation on both glass and PMMA substrates. Optical micrographs taken on single layer films deposited on PMMA substrates did not reveal any cracks. Cracks in films were observed on PMMA substrates when the substrate temperature exceeded 80degreesC. Antireflection coatings of 3 and 4 layers have been deposited and characterized. Antireflection coatings made on PMMA substrate using Substance2 (H2) and SiO2 combination showed very fine cracks when observed under microscope. Optical performance of the coatings has been explained with the help of optical micrographs.
Resumo:
In this paper, we consider the problem of selecting, for any given positive integer k, the top-k nodes in a social network, based on a certain measure appropriate for the social network. This problem is relevant in many settings such as analysis of co-authorship networks, diffusion of information, viral marketing, etc. However, in most situations, this problem turns out to be NP-hard. The existing approaches for solving this problem are based on approximation algorithms and assume that the objective function is sub-modular. In this paper, we propose a novel and intuitive algorithm based on the Shapley value, for efficiently computing an approximate solution to this problem. Our proposed algorithm does not use the sub-modularity of the underlying objective function and hence it is a general approach. We demonstrate the efficacy of the algorithm using a co-authorship data set from e-print arXiv (www.arxiv.org), having 8361 authors.
Resumo:
Commercially Pure Magnesium initially hot rolled and having a basal texture was deformed by Equal Channel Angular Extrusion (ECAE). ECAE was carried out upto 8 passes in a 90° die following routes A and Bc through a processing sequence involving two temperatures, namely 523 and 473 K. Texture and microstructure formed were studied using electron back scatter diffraction (EBSD) technique. In addition to significant reduction in grain size, strong <0002> fiber texture inclined at an angle ~ 45o from the extrusion axis formed in the material. Texture was also analyzed by orientation distribution function (ODF) and compared vis-à-vis shear texture. A significant amount of dynamic recrystallization occurred during ECAE, which apparently did not influence texture.
Resumo:
The lifetime calculation of large dense sensor networks with fixed energy resources and the remaining residual energy have shown that for a constant energy resource in a sensor network the fault rate at the cluster head is network size invariant when using the network layer with no MAC losses.Even after increasing the battery capacities in the nodes the total lifetime does not increase after a max limit of 8 times. As this is a serious limitation lots of research has been done at the MAC layer which allows to adapt to the specific connectivity, traffic and channel polling needs for sensor networks. There have been lots of MAC protocols which allow to control the channel polling of new radios which are available to sensor nodes to communicate. This further reduces the communication overhead by idling and sleep scheduling thus extending the lifetime of the monitoring application. We address the two issues which effects the distributed characteristics and performance of connected MAC nodes. (1) To determine the theoretical minimum rate based on joint coding for a correlated data source at the singlehop, (2a) to estimate cluster head errors using Bayesian rule for routing using persistence clustering when node densities are the same and stored using prior probability at the network layer, (2b) to estimate the upper bound of routing errors when using passive clustering were the node densities at the multi-hop MACS are unknown and not stored at the multi-hop nodes a priori. In this paper we evaluate many MAC based sensor network protocols and study the effects on sensor network lifetime. A renewable energy MAC routing protocol is designed when the probabilities of active nodes are not known a priori. From theoretical derivations we show that for a Bayesian rule with known class densities of omega1, omega2 with expected error P* is bounded by max error rate of P=2P* for single-hop. We study the effects of energy losses using cross-layer simulation of - large sensor network MACS setup, the error rate which effect finding sufficient node densities to have reliable multi-hop communications due to unknown node densities. The simulation results show that even though the lifetime is comparable the expected Bayesian posterior probability error bound is close or higher than Pges2P*.