962 resultados para Amine, Sam
Resumo:
Photocatalysis using semiconductor catalyst such as TiO2, in presence of UV light, is a promising technique for the inactivation of various microorganisms present in water. In the current study, the photocatalytic inactivation of Escherichia coli bacteria was studied with commercial Degussa Aeroxide TiO2 P25 (Aeroxide) and combustion synthesized TiO2 (CS TiO2) catalysts immobilized on glass slides in presence of UV irradiation. Thin films of the catalyst and polyelectrolytes, poly(allyl amine hydrochloride) and poly(styrene sulfonate sodium salt), were deposited on glass slides by layer by layer (LbL) deposition method and characterized by SEM and AFM imaging. The effect of various parameters, namely, catalyst concentration, surface area and number of bilayers, on inactivation was studied. Maximum inactivation of 8-log reduction in the viable count was observed with 1.227 mg/cm(2) of catalyst loaded slides. With this loading, complete inactivation was observed within 90 min and 75 min of irradiation, for Aeroxide and CS TiO2, respectively. Further increase in the catalyst concentration or increasing number of bilayers had no significant effect on inactivation. The effect of surface area on the inactivation was studied by increasing the number of slides and the inactivation was observed to increase with increasing surface area. It was also observed that the immobilized catalyst slides can be used for several cycles leading to an economic process. The study shows potential application of TiO2, for the inactivation of bacteria, in its fixed form by a simple immobilization technique.
Resumo:
The reaction of 2-formylbenzenesulfonyl chloride 1 and its pseudo isomer 2 with primary amines give either the corresponding sulfonamido Schiff bases or the corresponding 2-formylbenzenesulfonamide depending on the concentration of the amine used. The derivatives exist as an equilibrium mixture of the corresponding sulfonamide and 2-alkyl-3-hydroxy(or 3-aminoalkyl)-benzisothiazole-1,1-dioxide. Spectroscopic studies suggest that 2-formylbenzenesulfonamides exist as benzisothiazole-1,1-dioxides in the solid state, as a mixture of 2-formylbenzenesulfonamide and the corresponding benzisothiazole-1,1-dioxide in solution and as 2-formyl-benzenesulfonamides in the gas phase.
Resumo:
The synthesis, properties and crystal structure of the cage complex (1-hydroxy-8-methyl-3,6,10,13,15,18-hexaazabicyclo[6.6.5]nonadecane)cobalt(III) chloride hydrate ([Co(Me,OH-absar)] C13.H2O) are reported. The mechanism of the formation of this contracted cavity cage from a nitro-capped hexaazabicycloicosane type cage has been investigated. Treatment of (1-methyl-8-nitro-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosane)cobalt(III) chloride ([Co(Me,NO2-sar)] 3+) with excess base in aqueous solution leads initially to rapid (t1/2 < 1 ms) and reversible deprotonation of one coordinated secondary amine. This species undergoes a retro-Mannich type reaction and imine hydrolysis (t1/2 almost-equal-to 90 s). Quenching the reaction with acid gives rise to a pair of isomeric intermediate species which have been isolated and characterized. They have a pendant arm macrocyclic structure, resulting from the loss of a methylene unit from one of the arms of the cap. Heating either isomer in aqueous solution gives the new cage compound with the contracted cap. It is postulated that this occurs through a Nef reaction, resulting in the formation of a ketone which then condenses with the coordinated primary amine. A comparison with the corresponding bicycloicosane analogue indicates a reduced chromophoric cavity size for the contracted cage. The reduction potential of the cobalt(III)/cobalt(II) couple is 170 mV more negative for the smaller cage, and, in the electronic spectrum of the cobalt(III) complex, the d-d transitions are both shifted to higher energy, corresponding to a stronger ligand field.
Resumo:
A hexagonal mesoporous phase based on SnO2 is synthesized for the first time by using an anionic surfactant; hexagonal phases of TiO2 are prepared with neutral amine surfactants.
Monte Carlo simulation of network formation based on structural fragments in epoxy-anhydride systems
Resumo:
A method combining the Monte Carlo technique and the simple fragment approach has been developed for simulating network formation in amine-catalysed epoxy-anhydride systems. The method affords a detailed insight into the nature and composition of the network, showing the distribution of various fragments. It has been used to characterize the network formation in the reaction of the diglycidyl ester of isophthalic acid with hexahydrophthalic anhydride, catalysed by benzyldimethylamine. Pre-gel properties like number and weight distributions and average molecular weights have been calculated as a function of epoxy conversion, leading to a prediction of the gel-point conversion. Analysis of the simulated network further yields other characteristic properties such as concentration of crosslink points, distribution and concentration of elastically active chains, average molecular weight between crosslinks, sol content and mass fraction of pendent chains. A comparison has been made of the properties obtained through simulation with those predicted by the fragment approach alone, which, however, gives only average properties. The Monte Carlo simulation results clearly show that loops and other cyclic structures occur in the gel. This may account for the differences observed between the results of the simulation and the fragment model in the post-gel phase. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
Troger's base was the first amine to be resolved where the chirality was solely due to very high inversion barrier around nitrogen atom(s). Though the molecule was known over a century, work done during the past one decade has shown that Troger's base and its analogues could be used as chiral solvating agents, DNA-binding ligands and for the construction of biomimetic molecular receptors and clathrate hosts, Asymmetric synthesis of Troger's base analogues has also been achieved recently, Because of the rigid, 'V'-shaped chiral nature of this molecule, there is a growing interest for use of this unit in the design of potential host systems, This review article focuses on the chemistry of Troger's base along with the possible future utilities.
Resumo:
The ternary metal deoxyribonucleotide complex [Cu(bzim)(5?-dGMP)(H2O)3](bzim = benzimidazole, 5?-dGMP = 2?-deoxyguanosine 5?-monophosphate) has been prepared and the structure analysed by X-ray diffraction. The compound crystallizes in the space group P1 with a= 7.069(6), b= 13.959(10), c= 14.204(12)Å, ?= 75.12(6), ?= 94.15(6), ?= 97.98(6)° and Z= 2. The structure was solved by the heavy-atom method and refined by full-matrix least-squares procedures on the basis of 2813 observed [I[gt-or-equal] 3?(I)] reflections to final R and R? values of 0.050 and 0.052 respectively. There are two independent molecules in the asymmetric unit and both copper(II) centres have square-pyramidal co-ordination geometry. An unusual feature of the structure is the co-ordination of the metal by N(7) of the base, in the presence of a ?-aromatic amine, bzim. The structure is stabilized by intermolecular base�bzim stacking. The nucleotides of both the molecules have an anti conformation about the glycosyl bond, and a gauche-gauche conformation about the C(4?)�C(5?) bond. A feature of particular interest is the unusual sugar conformation. The base furanose rings of the two nucleotide molecules adopt C(3?)-exo/C(2?)-endo pucker and C(3?)-exo pucker respectively.
Resumo:
Four cationic acridine derivatives have been synthesized. The positively charged amine residue in one of these is connected directly on to the acridine nucleus and in three other acridines, the amines are connected via a 9-CH2 unit to acridine. We have investigated the binding of these acridines with mammalian DNA by absorption titration, UV- and induced-CD spectroscopy and competitive ethidium bromide displacement fluorescence assay. The effects on the DNA duplex denaturation melting temperatures upon binding of each one of these are also examined. The results obtained herein clearly show that the introduction of a -CH2 group in the im mediate vicinity of the interrelation moiety introduces alterations in the DNA binding characteristics of the resulting acridines.
Resumo:
An experimental programme based on statistical analysis was used for optimizing the reverse Rotation of silica from non-magnetic spiral preconcentrate of Kudremukh iron ore. Flotation of silica with amine and starch as the Rotation reagents was studied to estimate the optimum reagent levels at various mesh of grind. The experiments were first carried out using a two level three factor design. Analysis of the results showed that two parameters namely, the concentration level of the amine collector and the mesh of grind, were significant. Experiments based on an orthogonal design of the hexagonal type were then carried out to determine the effects of these two variables, on recovery and grade of the concentrate. Regression equations have been developed as models. Response contours have been plotted using the 'path of steepest ascent', maximum response has been optimized at 0.27 kg/ton of amine collector, 0.5 kg/ton of starch and mesh of grind of 48.7% passing 300 mesh to give a recovery of 83.43% of Fe in the concentrate containing 66.6% Fe and 2.17% SiO2.
Resumo:
A new class of epoxy resins having N-N bonds in their structure has been synthesized by reacting N,N'-aliphatic dicarboxyl bis(hydrazones) (the aldehyde/ketone derivatives of malonic, adipic, and sebacic dihydrazides) with epichlorohydrin. The reactivity of the[GRAPHICS] protons as a function of the substituent group and the number of methylene spacer groups present in the hydrazone has been examined. The resins obtained have been characterized by elemental and epoxy equivalent analyses and IR and NMR spectra. All these resins are found to have adequate viscosity and cure easily with amine curatives at elevated temperatures. Relevant properties for their use as binders in propellant formulations, such as thermal stability, heat of combustion, density, temperature dependence of viscosity, and mechanical strength of the composites, have been evaluated. (C) 1997 John Wiley & Sons, Inc.
Resumo:
The He I photoelectron spectra of bromine, methylamine, and their complex have been obtained, and the spectra show that lone-pair orbital energy of nitrogen in methylamine is stabilized by 1.8 eV and the bromine orbital energies are destabilized by about 0.5 eV due to complexation. Ab initio calculations have been performed on the charge-transfer complexes of Br-2 with ammonia and methyl-, dimethyl-, and trimethylamines at the 3-21G*, 6-311G, and 6-311G* levels and also with effective core potentials. Calculations predict donor and acceptor orbital energy shifts upon complexation, and there is a reasonable agreement between the calculated and experimental results. Complexation energies have been corrected for BSSE. Frequency analysis has confirmed that ammonia and trimethylamine form complexes with C-3v symmetry and methylamine and dimethylamine with C-s symmetry. Calculations reveal that the lone-pair orbital of nitrogen in amine and the sigma* orbital of Br-2 are involved in the charge-transfer interaction. LANL1DZ basis seems to be consistent and give a reliable estimate of the complexation energy. The computed complexation energies, orbital energy shifts, and natural bond orbital analysis show that the strength of the complex gradually increases from ammonia to trimethylamine.
Resumo:
A multifunctional iron oxide based nanoformulation for combined cancer-targeted therapy and multimodal imaging has been meticulously designed and synthesized using a chemoselective ligation approach. Novel superparamagnetic magnetite nanoparticles simultaneously functionalized with amine, carboxyl, and azide groups were fabricated through a sequence of stoichiometrically controllable partial succinylation and Cu (II) catalyzed diazo transfer on the reactive amine termini of 2-aminoethylphosphonate grafted magnetite nanoparticles (MNPs). Functional moieties associated with MNP surface were chemoselectively conjugated with rhodamine B isothiocyanate (RITC), propargyl folate (FA), and paclitaxel (PTX) via tandem nucleophic addition of amine to isothithiocyanates, Cu (I) catalyzed azide-alkyne click chemistry and carbodiimide-promoted esterification. An extensive in vitro study established that the bioactives chemoselectively appended to the magnetite core bequeathed multifunctionality to the nanoparticles without any loss of activity of the functional molecules. Multifunctional nanoparticles, developed in the course of the study, could selectively target and induce apoptosis to folate-receptor (FR) overexpressing cancer cells with enhanced efficacy as compared to the free drug. In addition, the dual optical and magnetic properties of the synthesized nanoparticles aided in the real-time tracking of their intracellular pathways also as apoptotic events through dual fluorescence and MR-based imaging.
Resumo:
A new iron fluorophosphate of the composition, [C6N4H21] [Fe2F2(HPO4)(3)][H2PO4](.)2H(2)O, I has been prepared by the hydrothermal route. This compound contains iron fluorophosphate layers and the H2PO4- anions are present in the interlayer space along with the protonated amine and water molecules. The compound crystallizes in the monoclinic space group P2(1)/c. (a = 13-4422(10) Angstrom, b = 9 7320(10) Angstrom, c = 18-3123(3) Angstrom, beta = 92-1480degrees, V = 2393-92(5) Angstrom 3, Z = 4, M = 719-92, d(calc). = 1.997 g cm(-3), R-1 = 0.03 and wR(2) = 0,09).
Resumo:
By reacting cadmium salts with H2SO4 in the presence of organic amines or directly with amine sulfates under hydrothermal conditions, it has been possible to prepare three linear cadmium sulfates of linarite topology, with the compositions [H3N(CH2)(2)NH3](2)[CdCl2(SO4)][SO4].H2O, I, [HN(CH2)(6)NH][CdBr2(SO4)], II, [HN(CH2)(6)NH][CdCl2-(SO4)], III. A layered cadmium sulfate of composition [H3N(CH2)(3)NH3][Cd-2(H2O)(2)(SO4)(3)], IV, has also been obtained. These sulfates are the first examples of a family of organically templated metal sulfates with interesting structural features. In the linarite chains, the CdX4O2 (X = Cl, Br) octahedron shares two trans-edges to form an [Mphi(4)] (phi = anionic ligand) chain decorated by the SO4 tetrahedron that adopts a staggered arrangement on either side of the chain. IV is constructed by the fusion of four-membered ring ladders involving edge sharing between the sulfate tetrahedron and metal octahedron. IV appears to be the first member of a family of organically templated metal sulfates containing an octahedral-tetrahedral 2D net wherein the sulfate tetrahedron is connected at all four corners.
Resumo:
Transformations of the layered zinc phosphates of the compositions [C6N4H22](0.5) [Zn-2 (HPO4)(3)], I, [C3N2H12][Zn-2 (HPO4)(3)], II and [C3N2OH12][Zn-2 (HPO4)(3)], III, containing triethylenetetramine, 1,3-diaminopropane, and 1,3-diamino-2-hydroxypropane, respectively, have been investigated under different conditions. On heating in water, I transforms to a one-dimensional (1-D) ladder and a three-dimensional (3-D) structure, while II gives rise to only a two-dimensional (2-D) layered structure. In the transformation reaction of I with zinc acetate, the same ladder and 3-D structures are obtained along with a tubular layer. Under similar conditions II gives a layered structure formed by the joining of two ladder motifs. III, on the other hand, is essentially unreactive when heated with water and zinc acetate, probably because the presence of the hydroxy group in the amine which hydrogen bonds to the framework. In the presence of piperazine, I, II and III give rise to a four-membered, corner-shared linear chain which is likely to be formed via the ladder structure. In addition, 2-D and 3-D structures derived from the 1-D linear chain or ladder structures are also formed. The primary result from the study is that the layers produce 1-D ladders, which then undergo other transformations. It is noteworthy that in the various transformations carried out, most of the products are single-crystalline.