965 resultados para Algoritmo Boosting
Resumo:
En este trabajo se presentan los resultados derivados de la interpretacón de 320 estaciones gravimétricas realizadas sobre el diapiro de Cardona con el objetivo de obtener información sobre su geometría tridimensional. Para obtener una distribución tridimensional de la masa salina que explique las anomalías observadas se ha aplicado un método iterativo de ajustes sucesivos basado en un algoritmo de inversión automática. Esta metodología ha mostrado ser muy rápida, fácil de usar y con suficiente poder de resolución para perfilar no sólo la geometría del cuerpo salino, sino también la de estructuras similares. El diapiro salino de Cardona presenta un mínimo gravimétrico relacionado con el anticlinal de Pins-Cardona que se prolonga hacia el SW. El análisis cualitativo de la anomalía residual permite apreciar que el diapiro muestra una cierta vergencia hacia sur con un flanco sureste subvertical y un flanco noroeste con pendientes más suaves.
Resumo:
O objetivo deste trabalho foi o de apresentar o algoritmo de um programa computacional baseado em um método numérico de estimativa de perdas de herbicidas aplicados por pulverização aérea. Este método apresenta como entrada de dados a freqüência de tamanhos das gotas em papéis hidrossensíveis, observadas no gratículo de Porton acoplado ao microscópio. A partir desses valores calcula-se a distribuição acumulada do diâmetro médio do tamanho e do volume das gotas formadas pelo bico de pulverização utilizados na aplicação, conforme metodologia já conhecida. Os dados obtidos para estas curvas de distribuição permitem fazer uso do método numérico de interpolação linear para a obtenção do diâmetro mediano volumétrico e do diâmetro mediano numérico da gota. Estes valores são fundamentais para a determinação da uniformidade de gota. Este método numérico foi implementado em linguagem computacional, permitindo a comparação de valores observados com os encontrados pela interpolação, para papéis espalhados nas faixas de aplicação. É apresentado um exemplo de utilização do programa para placas de papel hidrossensível amostradas em experimento realizado em Pelotas, RS.
Resumo:
O modelo estatístico deve exprimir corretamente a estrutura do experimento. Isso é necessário para garantir que os componentes de variância que afetam efeitos referentes a fatores experimentais sejam idênticos aos componentes de variância usados para julgar a significância desses efeitos, exceto pelas próprias variâncias atribuíveis a esses efeitos. O modelo estatístico usualmente formulado ignora a estrutura das unidades que resulta de restrições à casualização. Como conseqüência, propriedades que decorrem da casualização não são apropriadamente levadas em conta, e inferências podem se tornar tendenciosas. Sugere-se um procedimento para identificação dos efeitos referentes à estrutura das unidades, e sua consideração no modelo estatístico e em inferências derivadas do experimento. Em particular, é proposto um algoritmo para a determinação prática dos valores esperados de quadrados médios que levam em conta apropriadamente a estrutura do experimento.
Resumo:
This paper investigates the use of ensemble of predictors in order to improve the performance of spatial prediction methods. Support vector regression (SVR), a popular method from the field of statistical machine learning, is used. Several instances of SVR are combined using different data sampling schemes (bagging and boosting). Bagging shows good performance, and proves to be more computationally efficient than training a single SVR model while reducing error. Boosting, however, does not improve results on this specific problem.
Resumo:
Treball final de carrera basat en el reconeixement de punts clau en imatges mitjançant l'algorisme Random Ferns.
Resumo:
O objetivo deste trabalho foi utilizar o método Bayesiano no ajuste do modelo de Wood a dados de produção de leite de cabras da raça Saanen. Dois grupos de animais da primeira e segunda lactação foram considerados. Amostras das distribuições marginais a posteriori dos parâmetros do modelo de Wood e das funções de produção derivadas desses parâmetros - pico de produção, tempo do pico de produção, persistência e produção total de leite - foram obtidas pelo algoritmo Gibbs Sampler. As inferências foram feitas em cada população e os resultados mostraram diferenças na taxa de decréscimo da produção após o pico e na persistência, indicando maior produção nos animais de segunda lactação. Realizou-se um estudo de simulação de dados para avaliar o método Bayesiano sob diferentes estruturas de matrizes de covariâncias dos parâmetros. Os resultados desse estudo indicam que o método é eficiente no estudo das curvas de lactação quando a matriz de covariância apresenta alta correlação dos parâmetros.
Resumo:
The use of "altered peptide ligands" (APL), epitopes designed for exerting increased immunogenicity as compared with native determinants, represents nowadays one of the most utilized strategies for overcoming immune tolerance to self-antigens and boosting anti-tumor T cell-mediated immune responses. However, the actual ability of APL-primed T cells to cross-recognize natural epitopes expressed by tumor cells remains a crucial concern. In the present study, we show that CAP1-6D, a superagonist analogue of a carcinoembriyonic antigen (CEA)-derived HLA-A*0201-restricted epitope widely used in clinical setting, reproducibly promotes the generation of low-affinity CD8(+) T cells lacking the ability to recognized CEA-expressing colorectal carcinoma (CRC) cells. Short-term T cell cultures, obtained by priming peripheral blood mononuclear cells from HLA-A*0201(+) healthy donors or CRC patients with CAP1-6D, were indeed found to heterogeneously cross-react with saturating concentrations of the native peptide CAP1, but to fail constantly lysing or recognizing through IFN- gamma release CEA(+)CRC cells. Characterization of anti-CAP1-6D T cell avidity, gained through peptide titration, CD8-dependency assay, and staining with mutated tetramers (D227K/T228A), revealed that anti-CAP1-6D T cells exerted a differential interaction with the two CEA epitopes, i.e., displaying high affinity/CD8-independency toward the APL and low affinity/CD8-dependency toward the native CAP1 peptide. Our data demonstrate that the efficient detection of self-antigen expressed by tumors could be a feature of high avidity CD8-independent T cells, and underline the need for extensive analysis of tumor cross-recognition prior to any clinical usage of APL as anti-cancer vaccines.
Resumo:
CD40L is one of the key molecules bridging the activation of specific T cells and the maturation of professional and nonprofessional antigen-presenting cells including B cells. CD4(+) T cells have been regarded as the major T-cell subset that expresses CD40L upon cognate activation; however, we demonstrate here that a putative CD8(+) helper T-cell subset expressing CD40L is induced in human and murine CD8(+) T cells in vitro and in mice immunized with antigen-pulsed dendritic cells. IL-12 and STAT4-mediated signaling was the major instructive cytokine signal boosting the ability of CD8(+) T cells to express CD40L both in vitro and in vivo. Additionally, TCR signaling strength modulated CD40L expression in CD8(+) T cells after primary differentiation in vitro as well as in vivo. The induction of CD40L in CD8(+) T cells regulated by IL-12 and TCR signaling may enable CD8(+) T cells to respond autonomously of CD4(+) T cells. Thus, we propose that under proinflammatory conditions, a self-sustaining positive feedback loop could facilitate the efficient priming of T cells stimulated by high affinity peptide displaying APCs.
Resumo:
O objetivo deste trabalho foi avaliar a eficiência, na construção de mapas genéticos, dos algoritmos seriação e delineação rápida em cadeia, além dos critérios para avaliação de ordens: produto mínimo das frações de recombinação adjacentes, soma mínima das frações de recombinação adjacentes e soma máxima dos LOD Scores adjacentes, quando usados com o algoritmo de verificação de erros " ripple" . Foi simulado um mapa com 24 marcadores, posicionados aleatoriamente a distâncias variadas, com média 10 cM. Por meio do método Monte Carlo, foram obtidas 1.000 populações de retrocruzamento e 1.000 populações F2, com 200 indivíduos cada, e diferentes combinações de marcadores dominantes e co-dominantes (100% co-dominantes, 100% dominantes e mistura com 50% co-dominantes e 50% dominantes). Foi, também, simulada a perda de 25, 50 e 75% dos dados. Observou-se que os dois algoritmos avaliados tiveram desempenho semelhante e foram sensíveis à presença de dados perdidos e à presença de marcadores dominantes; esta última dificultou a obtenção de estimativas com boa acurácia, tanto da ordem quanto da distância. Além disso, observou-se que o algoritmo " ripple" geralmente aumenta o número de ordens corretas e pode ser combinado com os critérios soma mínima das frações de recombinação adjacentes e produto mínimo das frações de recombinação adjacentes.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
In this paper, a hybrid simulation-based algorithm is proposed for the StochasticFlow Shop Problem. The main idea of the methodology is to transform the stochastic problem into a deterministic problem and then apply simulation to the latter. In order to achieve this goal, we rely on Monte Carlo Simulation and an adapted version of a deterministic heuristic. This approach aims to provide flexibility and simplicity due to the fact that it is not constrained by any previous assumption and relies in well-tested heuristics.
Resumo:
The HIV vaccine strategy that, to date, generated immune protection consisted of a prime-boost regimen using a canarypox vector and an HIV envelope protein with alum, as shown in the RV144 trial. Since the efficacy was weak, and previous HIV vaccine trials designed to generate antibody responses failed, we hypothesized that generation of T cell responses would result in improved protection. Thus, we tested the immunogenicity of a similar envelope-based vaccine using a mouse model, with two modifications: a clade C CN54gp140 HIV envelope protein was adjuvanted by the TLR9 agonist IC31®, and the viral vector was the vaccinia strain NYVAC-CN54 expressing HIV envelope gp120. The use of IC31® facilitated immunoglobulin isotype switching, leading to the production of Env-specific IgG2a, as compared to protein with alum alone. Boosting with NYVAC-CN54 resulted in the generation of more robust Th1 T cell responses. Moreover, gp140 prime with IC31® and alum followed by NYVAC-CN54 boost resulted in the formation and persistence of central and effector memory populations in the spleen and an effector memory population in the gut. Our data suggest that this regimen is promising and could improve the protection rate by eliciting strong and long-lasting humoral and cellular immune responses.
Resumo:
O objetivo deste trabalho foi avaliar a eficiência da aplicação do modelo SEBAL em estimar os fluxos de energia em superfície e a evapotranspiração diária, numa extensa área de cultivo de arroz irrigado, no município de Paraíso do Sul, RS, tendo como parâmetros dados do sensor ASTER. As variáveis estudadas constituem importantes parâmetros do tempo e do clima em estudos agrometeorológicos e de racionalização no uso da água. As metodologias convencionais de estimativa desses parâmetros são pontuais e geralmente apresentam incertezas, que aumentam quando o interesse é o comportamento espacial desses parâmetros. Aplicou-se o algoritmo "Surface Energy Balance Algorithm for Land" (SEBAL), em uma imagem do sensor "Advanced Spaceborne Thermal Emission and Reflection Radiometer" (ASTER). As estimativas obtidas foram comparadas com medições em campo, realizadas por uma estação micrometeorológica localizada no interior da área de estudo. As estimativas mais precisas foram as de fluxo de calor sensível e de evapotranspiração diária, e a estimativa que apresentou maior erro foi a do fluxo de calor no solo. A metodologia empregada foi capaz de reproduzir os fluxos de energia em superfície de maneira satisfatória para estudos agrometeorológicos e de rendimento de culturas.
Resumo:
O objetivo deste trabalho foi avaliar variáveis discriminantes no mapeamento digital de solos com uso de redes neurais artificiais. Os atributos topográficos elevação, declividade, aspecto, plano de curvatura e índice topográfico, derivados de um modelo digital de elevação, e os índices de minerais de argila, óxido de ferro e vegetação por diferença normalizada, derivados de uma imagem do Landsat7, foram combinados e avaliados quanto à capacidade de discriminação dos solos de uma área no noroeste do Estado do Rio de Janeiro. Foram utilizados o simulador de redes neurais Java e o algoritmo de aprendizado "backpropagation". Os mapas gerados por cada um dos seis conjuntos de variáveis testados foram comparados com pontos de referência, para a determinação da exatidão das classificações. Esta comparação mostrou que o mapa produzido com a utilização de todas as variáveis obteve um desempenho superior (73,81% de concordância) ao de mapas produzidos pelos demais conjuntos de variáveis. Possíveis fontes de erro na utilização dessa abordagem estão relacionadas, principalmente, à grande heterogeneidade litológica da área, que dificultou o estabelecimento de um modelo de correlação ambiental mais realista. A abordagem utilizada pode contribuir para tornar o levantamento de solos no Brasil mais rápido e menos subjetivo.
Resumo:
O objetivo deste trabalho foi avaliar uma nova metodologia para mapeamento da cultura da soja no Estado de Mato Grosso, por meio de imagens Modis e de diferentes abordagens de classificação de imagens. Foram utilizadas imagens diárias e imagens de 16 dias. As imagens diárias foram diretamente classificadas pelo algoritmo Isoseg. As duas séries de imagens de 16 dias, referentes ao ciclo total e à metade do ciclo da cultura da soja, foram transformadas pela análise de componentes principais (ACP), antes de serem classificadas. Dados de referência, obtidos por interpretação visual de imagens do sensor TM/Landsat-5, foram utilizados para a avaliação da exatidão das classificações. Os melhores resultados foram obtidos pela classificação das imagens do ciclo total da soja, transformadas pela ACP: índice global de 0,83 e Kappa de 0,63. A melhor classificação de imagens diárias mostrou índice global de 0,80 e Kappa de 0,55. AACP aplicada às imagens do ciclo total da soja permitiu o mapeamento das áreas de soja com índices de exatidão melhores do que os obtidos pela classificação derivada das imagens de data única.