958 resultados para Algebraic plane curves
Resumo:
This thesis is an attempt to initiate the development of a discrete geometry of the discrete plane H = {(qmxo,qnyo); m,n e Z - the set of integers}, where q s (0,1) is fixed and (xO,yO) is a fixed point in the first quadrant of the complex plane, xo,y0 ¢ 0. The discrete plane was first considered by Harman in 1972, to evolve a discrete analytic function theory for geometric difference functions. We shall mention briefly, through various sections, the principle of discretization, an outline of discrete a alytic function theory, the concept of geometry of space and also summary of work done in this thesis
Resumo:
The flange technique, suggested by Reynolds72 is simple technique to improve antenna characteristics. Using flange technique we can trim the antenna characteristic by suitably adjusting the flange parameters75. Later corrugated flanges87 are used for beam shaping. The important parameters of the corrugated flanges are (a) flange angle, (b) flange width, (c) flange position, (d) conductivity of the flange, (e) amplitude excitation of the flange elements, (f) period of corrugation etc. Compared to a compound horn the flange technique offers great convenience in trimming antenna characteristics. Horns are commonly used as a feed in radar and satellite communications. A large number of work had been done to improve the characteristics of horn antennas. It is an established fact that grooved walls on the inner surface of a horn can improve the antenna characteristics44. Corrugated comb surface can be used for the circular polarization98, tilt of polarization99 etc. This suggests the possibility to combine these two phenomena and to obtain a resultant beam. This thesis presents the result of an investigation to study the possibility of controlling different antenna characteristics like polarization, beam shaping, matching etc, using corrugated flange techniques.
Resumo:
Determining the morphological parameters that describe galaxies has always been a challenging task. The studies on the correlations between different photometric as well as spectroscopic parameters of the galaxies help in understanding their structure, properties of the stars and gas which constitute the galaxy, the various physical and chemical processes which determine the properties, and galaxy formation and evolution. In the last few decades, the advent of Charge Coupled Devices (CCDs) and near infrared arrays ha\·e provided quick and reliable digitized data acquisition, in the optical and near infrared bands. This has provided an avalanche of data, which can be processed using sophisticated image analysis techniques to obtain information about the morphology of galaxies. The photometric analysis performed in this thesis involve the extraction of structural parameters of early type gala.xies imaged in the near infrared K (2.2ttm) band, obtaining correlations between these, parameters and using them to constrain the large scale properties of galaxi,~s.
Resumo:
A compact coplanar waveguide-fed (CPW) monopole antenna for ultra-wideband wireless communication is presented. The proposed antenna comprises of a CPW-fed beveled rectangular patch with a modified slotted ground. The overall size of the antenna is 30 mm 27 mm 1.6 mm. The lower edge of the band is attained by properly decoupling the resonant frequencies due to the extended ground plane and the beveled rectangular patch of the antenna. The upper edge of the radiating band is enhanced by beveling the ground plane corners near the feed point. Experimental results show that the designed antenna operates in the 2.7–12 GHz band, for S11 10 dB with a gain of 2.7–5 dBi. Both the frequency domain and time domain characteristics of the antenna are investigated using antenna transfer function. It is observed that the antenna exhibits identical radiation patterns and reasonable transient characteristics over the entire operating band
Resumo:
A method for simultaneously enhancing the bandwidth and reducing the size of microstrip antennas (MSAs) using a modified ground plane (GP) has been proposed with design formulas. A combshaped truncated GP is used for this purpose. This method provides an overall compactness up to 85% for proximity-coupled MSAs in the frequency range of 900 MHz–5.5 GHz with an improvement inbandwidth up to seven times when compared with the conventional ones
Resumo:
Holographic grating with good storage life in poly(vinyl alcohol) based photopolymer film, prepared by gravity settling method, with reduced concentration of the dye was found to give good diffraction efficiency without crosslinking. The material was found to show good diffraction efficiency and sensitivity (75% diffraction efficiency at exposure energy of 80 mJ/cm2). The shelf life of the photopolymer solution could be improved by storage at a temperature 4 C in refrigerator
Resumo:
We give a proof of Iitaka's conjecture C2,1 using only elementary methods from algebraic geometry.
Resumo:
This thesis work is dedicated to use the computer-algebraic approach for dealing with the group symmetries and studying the symmetry properties of molecules and clusters. The Maple package Bethe, created to extract and manipulate the group-theoretical data and to simplify some of the symmetry applications, is introduced. First of all the advantages of using Bethe to generate the group theoretical data are demonstrated. In the current version, the data of 72 frequently applied point groups can be used, together with the data for all of the corresponding double groups. The emphasize of this work is placed to the applications of this package in physics of molecules and clusters. Apart from the analysis of the spectral activity of molecules with point-group symmetry, it is demonstrated how Bethe can be used to understand the field splitting in crystals or to construct the corresponding wave functions. Several examples are worked out to display (some of) the present features of the Bethe program. While we cannot show all the details explicitly, these examples certainly demonstrate the great potential in applying computer algebraic techniques to study the symmetry properties of molecules and clusters. A special attention is placed in this thesis work on the flexibility of the Bethe package, which makes it possible to implement another applications of symmetry. This implementation is very reasonable, because some of the most complicated steps of the possible future applications are already realized within the Bethe. For instance, the vibrational coordinates in terms of the internal displacement vectors for the Wilson's method and the same coordinates in terms of cartesian displacement vectors as well as the Clebsch-Gordan coefficients for the Jahn-Teller problem are generated in the present version of the program. For the Jahn-Teller problem, moreover, use of the computer-algebraic tool seems to be even inevitable, because this problem demands an analytical access to the adiabatic potential and, therefore, can not be realized by the numerical algorithm. However, the ability of the Bethe package is not exhausted by applications, mentioned in this thesis work. There are various directions in which the Bethe program could be developed in the future. Apart from (i) studying of the magnetic properties of materials and (ii) optical transitions, interest can be pointed out for (iii) the vibronic spectroscopy, and many others. Implementation of these applications into the package can make Bethe a much more powerful tool.
Resumo:
In dieser Arbeit werden zwei Aspekte bei Randwertproblemen der linearen Elastizitätstheorie untersucht: die Approximation von Lösungen auf unbeschränkten Gebieten und die Änderung von Symmetrieklassen unter speziellen Transformationen. Ausgangspunkt der Dissertation ist das von Specovius-Neugebauer und Nazarov in "Artificial boundary conditions for Petrovsky systems of second order in exterior domains and in other domains of conical type"(Math. Meth. Appl. Sci, 2004; 27) eingeführte Verfahren zur Untersuchung von Petrovsky-Systemen zweiter Ordnung in Außenraumgebieten und Gebieten mit konischen Ausgängen mit Hilfe der Methode der künstlichen Randbedingungen. Dabei werden für die Ermittlung von Lösungen der Randwertprobleme die unbeschränkten Gebiete durch das Abschneiden mit einer Kugel beschränkt, und es wird eine künstliche Randbedingung konstruiert, um die Lösung des Problems möglichst gut zu approximieren. Das Verfahren wird dahingehend verändert, dass das abschneidende Gebiet ein Polyeder ist, da es für die Lösung des Approximationsproblems mit üblichen Finite-Element-Diskretisierungen von Vorteil sei, wenn das zu triangulierende Gebiet einen polygonalen Rand besitzt. Zu Beginn der Arbeit werden die wichtigsten funktionalanalytischen Begriffe und Ergebnisse der Theorie elliptischer Differentialoperatoren vorgestellt. Danach folgt der Hauptteil der Arbeit, der sich in drei Bereiche untergliedert. Als erstes wird für abschneidende Polyedergebiete eine formale Konstruktion der künstlichen Randbedingungen angegeben. Danach folgt der Nachweis der Existenz und Eindeutigkeit der Lösung des approximativen Randwertproblems auf dem abgeschnittenen Gebiet und im Anschluss wird eine Abschätzung für den resultierenden Abschneidefehler geliefert. An die theoretischen Ausführungen schließt sich die Betrachtung von Anwendungsbereiche an. Hier werden ebene Rissprobleme und Polarisationsmatrizen dreidimensionaler Außenraumprobleme der Elastizitätstheorie erläutert. Der letzte Abschnitt behandelt den zweiten Aspekt der Arbeit, den Bereich der Algebraischen Äquivalenzen. Hier geht es um die Transformation von Symmetrieklassen, um die Kenntnis der Fundamentallösung der Elastizitätsprobleme für transversalisotrope Medien auch für Medien zu nutzen, die nicht von transversalisotroper Struktur sind. Eine allgemeine Darstellung aller Klassen konnte hier nicht geliefert werden. Als Beispiel für das Vorgehen wird eine Klasse von orthotropen Medien im dreidimensionalen Fall angegeben, die sich auf den Fall der Transversalisotropie reduzieren lässt.
Resumo:
Let G be finite group and K a number field or a p-adic field with ring of integers O_K. In the first part of the manuscript we present an algorithm that computes the relative algebraic K-group K_0(O_K[G],K) as an abstract abelian group. We solve the discrete logarithm problem, both in K_0(O_K[G],K) and the locally free class group cl(O_K[G]). All algorithms have been implemented in MAGMA for the case K = \IQ. In the second part of the manuscript we prove formulae for the torsion subgroup of K_0(\IZ[G],\IQ) for large classes of dihedral and quaternion groups.
Resumo:
Total energy SCF calculations were performed for noble gas difluorides in a relativistic procedure and compared with analogous non-relativistic calculations. The discrete variational method with numerical basis functions was used. Rather smooth potential energy curves could be obtained. The theoretical Kr - F and Xe - F bond distances were calculated to be 3.5 a.u. and 3.6 a.u. which should be compared with the experimental values of 3.54 a.u. and 3.7 a.u. Although the dissociation energies are off by a factor of about five it was found that ArF_2 may be a stable molecule. Theoretical ionization energies for the outer levels reproduce the experimental values for KrF_2 and XeF_2 to within 2 eV.
Resumo:
A LCAO-MO (linear combination of atomic orbitals - molecular orbitals) relativistic Dirac-Fock-Slater program is presented, which allows one to calculate accurate total energies for diatomic molecules. Numerical atomic Dirac-Fock-Slater wave functions are used as basis functions. All integrations as well as the solution of the Poisson equation are done fully numerical, with a relative accuracy of 10{^-5} - 10{^-6}. The details of the method as well as first results are presented here.
Resumo:
Ab initio fully relativistic SCF molecular calculations of energy eigenvalues as well as coupling-matrix elements are used to calculate the 1s_\sigma excitation differential cross section for Ne-Ne and Ne-O in ion-atom collisions. A relativistic perturbation treatment which allows a direct comparison with analogous non-relativistic calculations is also performed.
Resumo:
Diese Arbeit beschäftigt sich mit der Frage, wie sich in einer Familie von abelschen t-Moduln die Teilfamilie der uniformisierbaren t-Moduln beschreiben lässt. Abelsche t-Moduln sind höherdimensionale Verallgemeinerungen von Drinfeld-Moduln über algebraischen Funktionenkörpern. Bekanntermaßen lassen sich Drinfeld-Moduln in allgemeiner Charakteristik durch analytische Tori parametrisieren. Diese Tatsache überträgt sich allerdings nur auf manche t-Moduln, die man als uniformisierbar bezeichnet. Die Situation hat eine gewisse Analogie zur Theorie von elliptischen Kurven, Tori und abelschen Varietäten über den komplexen Zahlen. Um zu entscheiden, ob ein t-Modul in diesem Sinne uniformisierbar ist, wendet man ein Kriterium von Anderson an, das die rigide analytische Trivialität der zugehörigen t-Motive zum Inhalt hat. Wir wenden dieses Kriterium auf eine Familie von zweidimensionalen t-Moduln vom Rang vier an, die von Koeffizienten a,b,c,d abhängen, und gelangen dabei zur äquivalenten Fragestellung nach der Konvergenz von gewissen rekursiv definierten Folgen. Das Konvergenzverhalten dieser Folgen lässt sich mit Hilfe von Newtonpolygonen gut untersuchen. Schließlich erhält man durch dieses Vorgehen einfach formulierte Bedingungen an die Koeffizienten a,b,c,d, die einerseits die Uniformisierbarkeit garantieren oder andererseits diese ausschließen.