10 resultados para Algebraic plane curves
em CaltechTHESIS
Resumo:
Two separate problems are discussed: axisymmetric equilibrium configurations of a circular membrane under pressure and subject to thrust along its edge, and the buckling of a circular cylindrical shell.
An ordinary differential equation governing the circular membrane is imbedded in a family of n-dimensional nonlinear equations. Phase plane methods are used to examine the number of solutions corresponding to a parameter which generalizes the thrust, as well as other parameters determining the shape of the nonlinearity and the undeformed shape of the membrane. It is found that in any number of dimensions there exists a value of the generalized thrust for which a countable infinity of solutions exist if some of the remaining parameters are made sufficiently large. Criteria describing the number of solutions in other cases are also given.
Donnell-type equations are used to model a circular cylindrical shell. The static problem of bifurcation of buckled modes from Poisson expansion is analyzed using an iteration scheme and pertubation methods. Analysis shows that although buckling loads are usually simple eigenvalues, they may have arbitrarily large but finite multiplicity when the ratio of the shell's length and circumference is rational. A numerical study of the critical buckling load for simple eigenvalues indicates that the number of waves along the axis of the deformed shell is roughly proportional to the length of the shell, suggesting the possibility of a "characteristic length." Further numerical work indicates that initial post-buckling curves are typically steep, although the load may increase or decrease. It is shown that either a sheet of solutions or two distinct branches bifurcate from a double eigenvalue. Furthermore, a shell may be subject to a uniform torque, even though one is not prescribed at the ends of the shell, through the interaction of two modes with the same number of circumferential waves. Finally, multiple time scale techniques are used to study the dynamic buckling of a rectangular plate as well as a circular cylindrical shell; transition to a new steady state amplitude determined by the nonlinearity is shown. The importance of damping in determining equilibrium configurations independent of initial conditions is illustrated.
Resumo:
This thesis focuses mainly on linear algebraic aspects of combinatorics. Let N_t(H) be an incidence matrix with edges versus all subhypergraphs of a complete hypergraph that are isomorphic to H. Richard M. Wilson and the author find the general formula for the Smith normal form or diagonal form of N_t(H) for all simple graphs H and for a very general class of t-uniform hypergraphs H.
As a continuation, the author determines the formula for diagonal forms of integer matrices obtained from other combinatorial structures, including incidence matrices for subgraphs of a complete bipartite graph and inclusion matrices for multisets.
One major application of diagonal forms is in zero-sum Ramsey theory. For instance, Caro's results in zero-sum Ramsey numbers for graphs and Caro and Yuster's results in zero-sum bipartite Ramsey numbers can be reproduced. These results are further generalized to t-uniform hypergraphs. Other applications include signed bipartite graph designs.
Research results on some other problems are also included in this thesis, such as a Ramsey-type problem on equipartitions, Hartman's conjecture on large sets of designs and a matroid theory problem proposed by Welsh.
Resumo:
Curve samplers are sampling algorithms that proceed by viewing the domain as a vector space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve samplers exhibit a nice property besides the sampling property: the restriction of low-degree polynomials over the domain to the sampled curve is still low-degree. This property is often used in combination with the sampling property and has found many applications, including PCP constructions, local decoding of codes, and algebraic PRG constructions.
The randomness complexity of curve samplers is a crucial parameter for its applications. It is known that (non-explicit) curve samplers using O(log N + log(1/δ)) random bits exist, where N is the domain size and δ is the confidence error. The question of explicitly constructing randomness-efficient curve samplers was first raised in [TU06] where they obtained curve samplers with near-optimal randomness complexity.
In this thesis, we present an explicit construction of low-degree curve samplers with optimal randomness complexity (up to a constant factor) that sample curves of degree (m logq(1/δ))O(1) in Fqm. Our construction is a delicate combination of several components, including extractor machinery, limited independence, iterated sampling, and list-recoverable codes.
Resumo:
The propagation of the fast magnetosonic wave in a tokamak plasma has been investigated at low power, between 10 and 300 watts, as a prelude to future heating experiments.
The attention of the experiments has been focused on the understanding of the coupling between a loop antenna and a plasma-filled cavity. Special emphasis has been given to the measurement of the complex loading impedance of the plasma. The importance of this measurement is that once the complex loading impedance of the plasma is known, a matching network can be designed so that the r.f. generator impedance can be matched to one of the cavity modes, thus delivering maximum power to the plasma. For future heating experiments it will be essential to be able to match the generator impedance to a cavity mode in order to couple the r.f. energy efficiently to the plasma.
As a consequence of the complex impedance measurements, it was discovered that the designs of the transmitting antenna and the impedance matching network are both crucial. The losses in the antenna and the matching network must be kept below the plasma loading in order to be able to detect the complex plasma loading impedance. This is even more important in future heating experiments, because the fundamental basis for efficient heating before any other consideration is to deliver more energy into the plasma than is dissipated in the antenna system.
The characteristics of the magnetosonic cavity modes are confirmed by three different methods. First, the cavity modes are observed as voltage maxima at the output of a six-turn receiving probe. Second, they also appear as maxima in the input resistance of the transmitting antenna. Finally, when the real and imaginary parts of the measured complex input impedance of the antenna are plotted in the complex impedance plane, the resulting curves are approximately circles, indicating a resonance phenomenon.
The observed plasma loading resistances at the various cavity modes are as high as 3 to 4 times the basic antenna resistance (~ .4 Ω). The estimated cavity Q’s were between 400 and 700. This means that efficient energy coupling into the tokamak and low losses in the antenna system are possible.
Resumo:
A noncommutative 2-torus is one of the main toy models of noncommutative geometry, and a noncommutative n-torus is a straightforward generalization of it. In 1980, Pimsner and Voiculescu in [17] described a 6-term exact sequence, which allows for the computation of the K-theory of noncommutative tori. It follows that both even and odd K-groups of n-dimensional noncommutative tori are free abelian groups on 2n-1 generators. In 1981, the Powers-Rieffel projector was described [19], which, together with the class of identity, generates the even K-theory of noncommutative 2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups. According to Rieffel [20], the odd K-theory of a noncommutative n-torus coincides with the group of connected components of the elements of the algebra. In particular, generators of K-theory can be chosen to be invertible elements of the algebra. In Chapter 1, we derive an explicit formula for the First nontrivial generator of the odd K-theory of noncommutative tori. This gives the full set of generators for the odd K-theory of noncommutative 3-tori and 4-tori.
In Chapter 2, we apply the graded-commutative framework of differential geometry to the polynomial subalgebra of the noncommutative torus algebra. We use the framework of differential geometry described in [27], [14], [25], [26]. In order to apply this framework to noncommutative torus, the notion of the graded-commutative algebra has to be generalized: the "signs" should be allowed to take values in U(1), rather than just {-1,1}. Such generalization is well-known (see, e.g., [8] in the context of linear algebra). We reformulate relevant results of [27], [14], [25], [26] using this extended notion of sign. We show how this framework can be used to construct differential operators, differential forms, and jet spaces on noncommutative tori. Then, we compare the constructed differential forms to the ones, obtained from the spectral triple of the noncommutative torus. Sections 2.1-2.3 recall the basic notions from [27], [14], [25], [26], with the required change of the notion of "sign". In Section 2.4, we apply these notions to the polynomial subalgebra of the noncommutative torus algebra. This polynomial subalgebra is similar to a free graded-commutative algebra. We show that, when restricted to the polynomial subalgebra, Connes construction of differential forms gives the same answer as the one obtained from the graded-commutative differential geometry. One may try to extend these notions to the smooth noncommutative torus algebra, but this was not done in this work.
A reconstruction of the Beilinson-Bloch regulator (for curves) via Fredholm modules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical gap; in Chapter 3, we close this gap. More specifically, we do this by obtaining some technical results, and by proving Property 4 of Section 3.7 (see Theorem 3.9.4), which implies that such reformulation is, indeed, possible. The main motivation for this reformulation is the longer-term goal of finding possible analogs of the second K-group (in the context of algebraic geometry and K-theory of rings) and of the regulators for noncommutative spaces. This work should be seen as a necessary preliminary step for that purpose.
For the convenience of the reader, we also give a short description of the results from [12], as well as some background material on central extensions and Connes-Karoubi character.
Resumo:
We develop a logarithmic potential theory on Riemann surfaces which generalizes logarithmic potential theory on the complex plane. We show the existence of an equilibrium measure and examine its structure. This leads to a formula for the structure of the equilibrium measure which is new even in the plane. We then use our results to study quadrature domains, Laplacian growth, and Coulomb gas ensembles on Riemann surfaces. We prove that the complement of the support of the equilibrium measure satisfies a quadrature identity. Furthermore, our setup allows us to naturally realize weak solutions of Laplacian growth (for a general time-dependent source) as an evolution of the support of equilibrium measures. When applied to the Riemann sphere this approach unifies the known methods for generating interior and exterior Laplacian growth. We later narrow our focus to a special class of quadrature domains which we call Algebraic Quadrature Domains. We show that many of the properties of quadrature domains generalize to this setting. In particular, the boundary of an Algebraic Quadrature Domain is the inverse image of a planar algebraic curve under a meromorphic function. This makes the study of the topology of Algebraic Quadrature Domains an interesting problem. We briefly investigate this problem and then narrow our focus to the study of the topology of classical quadrature domains. We extend the results of Lee and Makarov and prove (for n ≥ 3) c ≤ 5n-5, where c and n denote the connectivity and degree of a (classical) quadrature domain. At the same time we obtain a new upper bound on the number of isolated points of the algebraic curve corresponding to the boundary and thus a new upper bound on the number of special points. In the final chapter we study Coulomb gas ensembles on Riemann surfaces.
Resumo:
The study of codes, classically motivated by the need to communicate information reliably in the presence of error, has found new life in fields as diverse as network communication, distributed storage of data, and even has connections to the design of linear measurements used in compressive sensing. But in all contexts, a code typically involves exploiting the algebraic or geometric structure underlying an application. In this thesis, we examine several problems in coding theory, and try to gain some insight into the algebraic structure behind them.
The first is the study of the entropy region - the space of all possible vectors of joint entropies which can arise from a set of discrete random variables. Understanding this region is essentially the key to optimizing network codes for a given network. To this end, we employ a group-theoretic method of constructing random variables producing so-called "group-characterizable" entropy vectors, which are capable of approximating any point in the entropy region. We show how small groups can be used to produce entropy vectors which violate the Ingleton inequality, a fundamental bound on entropy vectors arising from the random variables involved in linear network codes. We discuss the suitability of these groups to design codes for networks which could potentially outperform linear coding.
The second topic we discuss is the design of frames with low coherence, closely related to finding spherical codes in which the codewords are unit vectors spaced out around the unit sphere so as to minimize the magnitudes of their mutual inner products. We show how to build frames by selecting a cleverly chosen set of representations of a finite group to produce a "group code" as described by Slepian decades ago. We go on to reinterpret our method as selecting a subset of rows of a group Fourier matrix, allowing us to study and bound our frames' coherences using character theory. We discuss the usefulness of our frames in sparse signal recovery using linear measurements.
The final problem we investigate is that of coding with constraints, most recently motivated by the demand for ways to encode large amounts of data using error-correcting codes so that any small loss can be recovered from a small set of surviving data. Most often, this involves using a systematic linear error-correcting code in which each parity symbol is constrained to be a function of some subset of the message symbols. We derive bounds on the minimum distance of such a code based on its constraints, and characterize when these bounds can be achieved using subcodes of Reed-Solomon codes.
Resumo:
The experimental consequence of Regge cuts in the angular momentum plane are investigated. The principle tool in the study is the set of diagrams originally proposed by Amati, Fubini, and Stanghellini. Mandelstam has shown that the AFS cuts are actually cancelled on the physical sheet, but they may provide a useful guide to the properties of the real cuts. Inclusion of cuts modifies the simple Regge pole predictions for high-energy scattering data. As an example, an attempt is made to fit high energy elastic scattering data for pp, ṗp, π±p, and K±p, by replacing the Igi pole by terms representing the effect of a Regge cut. The data seem to be compatible with either a cut or the Igi pole.
Resumo:
Large plane deformations of thin elastic sheets of neo-Hookean material are considered and a method of successive substitutions is developed to solve problems within the two-dimensional theory of finite plane stress. The first approximation is determined by linear boundary value problems on two harmonic functions, and it is approached asymptotically at very large extensions in the plane of the sheet. The second and higher approximations are obtained by solving Poisson equations. The method requires modification when the membrane has a traction-free edge.
Several problems are treated involving infinite sheets under uniform biaxial stretching at infinity. First approximations are obtained when a circular or elliptic inclusion is present and when the sheet has a circular or elliptic hole, including the limiting cases of a line inclusion and a straight crack or slit. Good agreement with exact solutions is found for circularly symmetric deformations. Other examples discuss the stretching of a short wide strip, the deformation near a boundary corner which is traction-free, and the application of a concentrated load to a boundary point.
Resumo:
A general class of single degree of freedom systems possessing rate-independent hysteresis is defined. The hysteretic behavior in a system belonging to this class is depicted as a sequence of single-valued functions; at any given time, the current function is determined by some set of mathematical rules concerning the entire previous response of the system. Existence and uniqueness of solutions are established and boundedness of solutions is examined.
An asymptotic solution procedure is used to derive an approximation to the response of viscously damped systems with a small hysteretic nonlinearity and trigonometric excitation. Two properties of the hysteresis loops associated with any given system completely determine this approximation to the response: the area enclosed by each loop, and the average of the ascending and descending branches of each loop.
The approximation, supplemented by numerical calculations, is applied to investigate the steady-state response of a system with limited slip. Such features as disconnected response curves and jumps in response exist for a certain range of system parameters for any finite amount of slip.
To further understand the response of this system, solutions of the initial-value problem are examined. The boundedness of solutions is investigated first. Then the relationship between initial conditions and resulting steady-state solution is examined when multiple steady-state solutions exist. Using the approximate analysis and numerical calculations, it is found that significant regions of initial conditions in the initial condition plane lead to the different asymptotically stable steady-state solutions.