763 resultados para Alcohol Treatment, Machine Learning, Bayesian, Decision Tree
Resumo:
1.Marine ecosystems provide critically important goods and services to society, and hence their accelerated degradation underpins an urgent need to take rapid, ambitious and informed decisions regarding their conservation and management. 2.The capacity, however, to generate the detailed field data required to inform conservation planning at appropriate scales is limited by time and resource consuming methods for collecting and analysing field data at the large scales required. 3.The ‘Catlin Seaview Survey’, described here, introduces a novel framework for large-scale monitoring of coral reefs using high-definition underwater imagery collected using customized underwater vehicles in combination with computer vision and machine learning. This enables quantitative and geo-referenced outputs of coral reef features such as habitat types, benthic composition, and structural complexity (rugosity) to be generated across multiple kilometre-scale transects with a spatial resolution ranging from 2 to 6 m2. 4.The novel application of technology described here has enormous potential to contribute to our understanding of coral reefs and associated impacts by underpinning management decisions with kilometre-scale measurements of reef health. 5.Imagery datasets from an initial survey of 500 km of seascape are freely available through an online tool called the Catlin Global Reef Record. Outputs from the image analysis using the technologies described here will be updated on the online repository as work progresses on each dataset. 6.Case studies illustrate the utility of outputs as well as their potential to link to information from remote sensing. The potential implications of the innovative technologies on marine resource management and conservation are also discussed, along with the accuracy and efficiency of the methodologies deployed.
Resumo:
This monograph provides an overview of recruitment learning approaches from a computational perspective. Recruitment learning is a unique machine learning technique that: (1) explains the physical or functional acquisition of new neurons in sparsely connected networks as a biologically plausible neural network method; (2) facilitates the acquisition of new knowledge to build and extend knowledge bases and ontologies as an artificial intelligence technique; (3) allows learning by use of background knowledge and a limited number of observations, consistent with psychological theory.
Resumo:
Bearing faults are the most common cause of wind turbine failures. Unavailability and maintenance cost of wind turbines are becoming critically important, with their fast growing in electric networks. Early fault detection can reduce outage time and costs. This paper proposes Anomaly Detection (AD) machine learning algorithms for fault diagnosis of wind turbine bearings. The application of this method on a real data set was conducted and is presented in this paper. For validation and comparison purposes, a set of baseline results are produced using the popular one-class SVM methods to examine the ability of the proposed technique in detecting incipient faults.
Resumo:
In this paper we propose a novel approach to multi-action recognition that performs joint segmentation and classification. This approach models each action using a Gaussian mixture using robust low-dimensional action features. Segmentation is achieved by performing classification on overlapping temporal windows, which are then merged to produce the final result. This approach is considerably less complicated than previous methods which use dynamic programming or computationally expensive hidden Markov models (HMMs). Initial experiments on a stitched version of the KTH dataset show that the proposed approach achieves an accuracy of 78.3%, outperforming a recent HMM-based approach which obtained 71.2%.
Resumo:
The gross under-resourcing of conservation endeavours has placed an increasing emphasis on spending accountability. Increased accountability has led to monitoring forming a central element of conservation programs. Although there is little doubt that information obtained from monitoring can improve management of biodiversity, the cost (in time and/or money) of gaining this knowledge is rarely considered when making decisions about allocation of resources to monitoring. We present a simple framework allowing managers and policy advisors to make decisions about when to invest in monitoring to improve management. © 2010 Elsevier Ltd.
Resumo:
A number of online algorithms have been developed that have small additional loss (regret) compared to the best “shifting expert”. In this model, there is a set of experts and the comparator is the best partition of the trial sequence into a small number of segments, where the expert of smallest loss is chosen in each segment. The regret is typically defined for worst-case data / loss sequences. There has been a recent surge of interest in online algorithms that combine good worst-case guarantees with much improved performance on easy data. A practically relevant class of easy data is the case when the loss of each expert is iid and the best and second best experts have a gap between their mean loss. In the full information setting, the FlipFlop algorithm by De Rooij et al. (2014) combines the best of the iid optimal Follow-The-Leader (FL) and the worst-case-safe Hedge algorithms, whereas in the bandit information case SAO by Bubeck and Slivkins (2012) competes with the iid optimal UCB and the worst-case-safe EXP3. We ask the same question for the shifting expert problem. First, we ask what are the simple and efficient algorithms for the shifting experts problem when the loss sequence in each segment is iid with respect to a fixed but unknown distribution. Second, we ask how to efficiently unite the performance of such algorithms on easy data with worst-case robustness. A particular intriguing open problem is the case when the comparator shifts within a small subset of experts from a large set under the assumption that the losses in each segment are iid.
Resumo:
We propose a method for learning specific object representations that can be applied (and reused) in visual detection and identification tasks. A machine learning technique called Cartesian Genetic Programming (CGP) is used to create these models based on a series of images. Our research investigates how manipulation actions might allow for the development of better visual models and therefore better robot vision. This paper describes how visual object representations can be learned and improved by performing object manipulation actions, such as, poke, push and pick-up with a humanoid robot. The improvement can be measured and allows for the robot to select and perform the `right' action, i.e. the action with the best possible improvement of the detector.
Resumo:
We present our work on tele-operating a complex humanoid robot with the help of bio-signals collected from the operator. The frameworks (for robot vision, collision avoidance and machine learning), developed in our lab, allow for a safe interaction with the environment, when combined. This even works with noisy control signals, such as, the operator’s hand acceleration and their electromyography (EMG) signals. These bio-signals are used to execute equivalent actions (such as, reaching and grasping of objects) on the 7 DOF arm.
Resumo:
Aim: In 2013 QUT introduced the Medical Imaging Training Immersive Environment (MITIE) as a virtual reality (VR) platform that allowed students to practice general radiography. The system software has been expanded to now include C-Arm. The aim of this project was to investigate the use of this technology in the pedagogy of undergraduate medical imaging students who have limited to no experience in the use of the C-Arm clinically. Method: The Medical Imaging Training Immersive Environment (MITIE) application provides students with realistic and fully interactive 3D models of C-Arm equipment. As with VR initiatives in other health disciplines (1–2) the software mimics clinical practice as much as possible and uses 3D technology to enhance 3D spatial awareness and realism. The application allows students to set up and expose a virtual patient in a 3D environment as well as creating the resultant “image” for comparison with a gold standard. Automated feedback highlights ways for the student to improve their patient positioning, equipment setup or exposure factors. The students' equipment knowledge was tested using an on line assessment quiz and surveys provided information on the students' pre-clinical confidence scale, with post-clinical data comparisons. Ethical approval for the project was provided by the university ethics panel. Results: This study is currently under way and this paper will present analysis of initial student feedback relating to the perceived value of the application for confidence in a high risk environment (i.e. operating theatre) and related clinical skills development. Further in-depth evaluation is ongoing with full results to be presented. Conclusion: MITIE C-Arm has a development role to play in the pre-clinical skills training for Medical Radiation Science students. It will augment their theoretical understanding prior to their clinical experience. References 1. Bridge P, Appleyard R, Ward J, Phillips R, Beavis A. The development and evaluation of a virtual radiotherapy treatment machine using an immersive visualisation environment. Computers and Education 2007; 49(2): 481–494. 2. Gunn T, Berry C, Bridge P et al. 3D Virtual Radiography: Development and Initial Feedback. Paper presented at the 10th Annual Scientific Meeting of Medical Imaging and Radiation Therapy, March 2013 Hobart, Tasmania.
Resumo:
We present an approach for detecting sensor spoofing attacks on a cyber-physical system. Our approach consists of two steps. In the first step, we construct a safety envelope of the system. Under nominal conditions (that is, when there are no attacks), the system always stays inside its safety envelope. In the second step, we build an attack detector: a monitor that executes synchronously with the system and raises an alarm whenever the system state falls outside the safety envelope. We synthesize safety envelopes using a modified machine learning procedure applied on data collected from the system when it is not under attack. We present experimental results that show effectiveness of our approach, and also validate the several novel features that we introduced in our learning procedure.
Resumo:
The discovery of several genes that affect the risk for Alzheimer's disease ignited a worldwide search for single-nucleotide polymorphisms (SNPs), common genetic variants that affect the brain. Genome-wide search of all possible SNP-SNP interactions is challenging and rarely attempted because of the complexity of conducting approximately 1011 pairwise statistical tests. However, recent advances in machine learning, for example, iterative sure independence screening, make it possible to analyze data sets with vastly more predictors than observations. Using an implementation of the sure independence screening algorithm (called EPISIS), we performed a genome-wide interaction analysis testing all possible SNP-SNP interactions affecting regional brain volumes measured on magnetic resonance imaging and mapped using tensor-based morphometry. We identified a significant SNP-SNP interaction between rs1345203 and rs1213205 that explains 1.9% of the variance in temporal lobe volume. We mapped the whole brain, voxelwise effects of the interaction in the Alzheimer's Disease Neuroimaging Initiative data set and separately in an independent replication data set of healthy twins (Queensland Twin Imaging). Each additional loading in the interaction effect was associated with approximately 5% greater brain regional brain volume (a protective effect) in both Alzheimer's Disease Neuroimaging Initiative and Queensland Twin Imaging samples.