912 resultados para AJUSTE DE CURVAS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Através de alguns exemplos práticos, pretende-se defender que o conhecimento geométrico e, em particular, o conhecimento das curvas cónicas e suas aplicações, pode potenciar o trabalho projetual dos designers, diminuir os custos de hardware e software no ensino e no trabalho profissional, diminuir a necessidade de recurso a meios sofisticados e caros, reduzir a necessidade de permanente atualização dos meios tecnológicos, e de utilização de software que implique formação especializada e, sobretudo, que necessite de longos períodos de formação. Temos em vista contribuir para o reconhecimento da importância do estudo destas curvas e das superfícies por elas geradas, em especial no ensino da Geometria em cursos de Design. De facto, a partir da sistematização do conhecimento existente em outras áreas, como, por exemplo, a arquitetura e as engenharias, pelo aprofundamento da adaptação de propriedades das cónicas e de conhecimentos de áreas, como a geometria analítica ou a projetiva para a linguagem dos traçados geométricos, e pela contribuição com a sugestão de novos traçados, pode desenvolver-se a capacidade dos designers e estudantes de design resolverem problemas, no âmbito do projeto, na representação técnica e na comunicação externa com não peritos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de mestrado em Física, apresentada à Universidade de Lisboa, através da Faculdade de Ciências, 2016

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obra publicada en el tomo xxii de las "Memorias de la Real Academía de Ciencias Exactas, Fisicas y Naturales de Madrid."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analogous to sunspots and solar photospheric faculae, which visibility is modulated by stellar rotation, stellar active regions consist of cool spots and bright faculae caused by the magnetic field of the star. Such starspots are now well established as major tracers used to estimate the stellar rotation period, but their dynamic behavior may also be used to analyze other relevant phenomena such as the presence of magnetic activity and its cycles. To calculate the stellar rotation period, identify the presence of active regions and investigate if the star exhibits or not differential rotation, we apply two methods: a wavelet analysis and a spot model. The wavelet procedure is also applied here to study pulsation in order to identify specific signatures of this particular stellar variability for different types of pulsating variable stars. The wavelet transform has been used as a powerful tool for treating several problems in astrophysics. In this work, we show that the time-frequency analysis of stellar light curves using the wavelet transform is a practical tool for identifying rotation, magnetic activity, and pulsation signatures. We present the wavelet spectral composition and multiscale variations of the time series for four classes of stars: targets dominated by magnetic activity, stars with transiting planets, those with binary transits, and pulsating stars. We applied the Morlet wavelet (6th order), which offers high time and frequency resolution. By applying the wavelet transform to the signal, we obtain the wavelet local and global power spectra. The first is interpreted as energy distribution of the signal in time-frequency space, and the second is obtained by time integration of the local map. Since the wavelet transform is a useful mathematical tool for nonstationary signals, this technique applied to Kepler and CoRoT light curves allows us to clearly identify particular signatures for different phenomena. In particular, patterns were identified for the temporal evolution of the rotation period and other periodicity due to active regions affecting these light curves. In addition, a beat-pattern vii signature in the local wavelet map of pulsating stars over the entire time span was also detected. The second method is based on starspots detection during transits of an extrasolar planet orbiting its host star. As a planet eclipses its parent star, we can detect physical phenomena on the surface of the star. If a dark spot on the disk of the star is partially or totally eclipsed, the integrated stellar luminosity will increase slightly. By analyzing the transit light curve it is possible to infer the physical properties of starspots, such as size, intensity, position and temperature. By detecting the same spot on consecutive transits, it is possible to obtain additional information such as the stellar rotation period in the planetary transit latitude, differential rotation, and magnetic activity cycles. Transit observations of CoRoT-18 and Kepler-17 were used to implement this model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing interest and applications of biotechnology products have increased the development of new processes for recovery and purification of proteins. The expanded bed adsorption (EBA) has emerged as a promising technique for this purpose. It combines into one operation the steps of clarification, concentration and purification of the target molecule. Hence, the method reduces the time and the cost of operation. In this context, this thesis aim was to evaluate the recovery and purification of 503 antigen of Leishmania i. chagasi expressed in E. coli M15 and endotoxin removal by EBA. In the first step of this study, batch experiments were carried out using two experimental designs to define the optimal adsorption and elution conditions of 503 antigen onto Streamline chelating resin. For adsorption assays, using expanded bed, it was used a column of 2.6 cm in diameter by 30.0 cm in height coupled to a peristaltic pump. In the second step of study, the removal of endotoxin during antigen recovery process was evaluated employing the non-ionic surfactant Triton X-114 in the washing step ALE. In the third step, we sought developing a mathematical model able to predict the 503 antigen breakthrough curves in expanded mode. The experimental design results to adsorption showed the pH 8.0 and the NaCl concentration of 2.4 M as the optimum adsorption condition. In the second design, the only significant factor for elution was the concentration of imidazole, which was taken at 600 mM. The adsorption isotherm of the 503 antigen showed a good fit to the Langmuir model (R = 0.98) and values for qmax (maximum adsorption capacity) and Kd (equilibrium constant) estimated were 1.95 mg/g and 0.34 mg/mL, respectively. Purification tests directly from unclarified feedstock showed a recovery of 59.2% of the target protein and a purification factor of 6.0. The addition of the non-ionic surfactant Triton X-114 to the washing step of EBA led to high levels (> 99%) of LPS removal initially present in the samples for all conditions tested. The mathematical model obtained to describe the 503 antigen breakthrough curves in Streamline Chelanting resin in expanded mode showed a good fit for both parameter estimation and validation steps. The validated model was used to optimize the efficiencies, achieving maximum values of the process and of the column efficiencies of 89.2% and 75.9%, respectively. Therefore, EBA is an efficient alternative for the recovery of the target protein and removal of endotoxin from an E. coli unclarified feedstock in just one step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last 16 years emerged in Brazil a segment of independent producers with focus on onshore basins and shallow waters. Among the challenges of these companies is the development of fields with projects with a low net present value (NPV). The objective of this work was to study the technical-economical best option to develop an oil field in the Brazilian Northeast using reservoir simulation. Real geology, reservoir and production data was used to build the geological and simulation model. Due to not having PVT analysis, distillation method test data known as the true boiling points (TBP) were used to create a fluids model generating the PVT data. After execution of the history match, four development scenarios were simulated: the extrapolation of production without new investments, the conversion of a producing well for immiscible gas injection, the drilling of a vertical well and the drilling of a horizontal well. As a result, from the financial point of view, the gas injection is the alternative with lower added value, but it may be viable if there are environmental or regulatory restrictions to flaring or venting the produced gas into the atmosphere from this field or neighboring accumulations. The recovery factor achieved with the drilling of vertical and horizontal wells is similar, but the horizontal well is a project of production acceleration; therefore, the present incremental cumulative production with a minimum rate of company's attractiveness is higher. Depending on the crude oil Brent price and the drilling cost, this option can be technically and financially viable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work consists basically in the elaboration of an Artificial Neural Network (ANN) in order to model the composites materials’ behavior when submitted to fatigue loadings. The proposal is to develop and present a mixed model, which associate an analytical equation (Adam Equation) to the structure of the ANN. Given that the composites often shows a similar behavior when subject to float loadings, this equation aims to establish a pre-defined comparison pattern for a generic material, so that the ANN fit the behavior of another composite material to that pattern. In this way, the ANN did not need to fully learn the behavior of a determined material, because the Adam Equation would do the big part of the job. This model was used in two different network architectures, modular and perceptron, with the aim of analyze it efficiency in distinct structures. Beyond the different architectures, it was analyzed the answers generated from two sets of different data – with three and two SN curves. This model was also compared to the specialized literature results, which use a conventional structure of ANN. The results consist in analyze and compare some characteristics like generalization capacity, robustness and the Goodman Diagrams, developed by the networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary systems are key environments to study the fundamental properties of stars. In this work, we analyze 99 binary systems identified by the CoRoT space mission. From the study of the phase diagrams of these systems, our sample is divided into three groups: those whose systems are characterized by the variability relative to the binary eclipses; those presenting strong modulations probably due to the presence of stellar spots on the surface of star; and those whose systems have variability associated with the expansion and contraction of the surface layers. For eclipsing binary stars, phase diagrams are used to estimate the classification in regard to their morphology, based on the study of equipotential surfaces. In this context, to determine the rotation period, and to identify the presence of active regions, and to investigate if the star exhibits or not differential rotation and study stellar pulsation, we apply the wavelet procedure. The wavelet transform has been used as a powerful tool in the treatment of a large number of problems in astrophysics. Through the wavelet transform, one can perform an analysis in time-frequency light curves rich in details that contribute significantly to the study of phenomena associated with the rotation, the magnetic activity and stellar pulsations. In this work, we apply Morlet wavelet (6th order), which offers high time and frequency resolution and obtain local (energy distribution of the signal) and global (time integration of local map) wavelet power spectra. Using the wavelet analysis, we identify thirteen systems with periodicities related to the rotational modulation, besides the beating pattern signature in the local wavelet map of five pulsating stars over the entire time span.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary systems are key environments to study the fundamental properties of stars. In this work, we analyze 99 binary systems identified by the CoRoT space mission. From the study of the phase diagrams of these systems, our sample is divided into three groups: those whose systems are characterized by the variability relative to the binary eclipses; those presenting strong modulations probably due to the presence of stellar spots on the surface of star; and those whose systems have variability associated with the expansion and contraction of the surface layers. For eclipsing binary stars, phase diagrams are used to estimate the classification in regard to their morphology, based on the study of equipotential surfaces. In this context, to determine the rotation period, and to identify the presence of active regions, and to investigate if the star exhibits or not differential rotation and study stellar pulsation, we apply the wavelet procedure. The wavelet transform has been used as a powerful tool in the treatment of a large number of problems in astrophysics. Through the wavelet transform, one can perform an analysis in time-frequency light curves rich in details that contribute significantly to the study of phenomena associated with the rotation, the magnetic activity and stellar pulsations. In this work, we apply Morlet wavelet (6th order), which offers high time and frequency resolution and obtain local (energy distribution of the signal) and global (time integration of local map) wavelet power spectra. Using the wavelet analysis, we identify thirteen systems with periodicities related to the rotational modulation, besides the beating pattern signature in the local wavelet map of five pulsating stars over the entire time span.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discussion about rift evolution in the Brazilian Equatorial margin during the South America-Africa breakup in the Jurassic/Cretaceous has been focused in many researches. But rift evolution based on development and growth of faults has not been well explored. In this sense, we investigated the Cretaceous Potiguar Basin in the Equatorial margin of Brazil to understand the geometry of major faults and the influence of crustal heterogeneity and preexisting structural fabric in the evolution of the basin internal architecture. Previous studies pointed out that the rift is an asymmetrical half-graben elongated along the NE-SW direction. We used 2D seismic, well logs and 3D gravity modeling to analyze four major border fault segments and determine their maximum displacement (Dmax) and length (L) ratio in the Potiguar Rift. We constrained the 3D gravity modeling with well data and the interpretation of seismic sections. The difference of the fault displacement measured in the gravity model is in the order of 10% compared to seismic and well data. The fault-growth curves allowed us to divide the faulted rift border into four main fault segments, which provide roughly similar Dmax/L ratios. Fault-growth curves suggest that a regional uniform tectonic mechanism influenced growth of the rift fault segments. The variation of the displacements along the fault segments indicates that the fault segments were formed independently during rift initiation and were linked by hard and soft linkages. The latter formed relay ramps. In the interconnection zones the Dmax/L ratios are highest due to interference of fault segment motions. We divided the evolution of the Potiguar Rift into five stages based on these ratios and correlated them with the major tectonic stages of the breakup between South America and Africa in Early Cretaceous.