875 resultados para 3D programming
Resumo:
This article explores the representations and tonal qualities of British “structured reality” programming. Focusing on The Only Way Is Essex and Made in Chelsea, it investigates their glocalizing of the model established by MTV’s Laguna Beach and The Hills. It argues that while they blur boundaries between docusoap, drama, and soap opera, the British programs also recognize and foreground issues of construction for their reality TV-literate youth audience. It suggests the programs play a key role in their respective channel identities and the ideologies of British youth television, connecting to larger issues of class, gender, and taste. This is articulated through their regional and classed femininities, with the article exploring how the programs draw on classed ideologies surrounding “natural” and “excessive” femininities and of the role of this in their engagement with construction and camp play. This play contributes to the tonal shift offered by the British programs, mixing the melodrama of the MTV programs with a knowing, at times comic edge that can tip into mockery. In doing so, the programs offer their audience a combination of performative self-awareness and emotional realism that situates them clearly within British youth television
Resumo:
This chapter presents techniques used for the generation of 3D digital elevation models (DEMs) from remotely sensed data. Three methods are explored and discussed—optical stereoscopic imagery, Interferometric Synthetic Aperture Radar (InSAR), and LIght Detection and Ranging (LIDAR). For each approach, the state-of-the-art presented in the literature is reviewed. Techniques involved in DEM generation are presented with accuracy evaluation. Results of DEMs reconstructed from remotely sensed data are illustrated. While the processes of DEM generation from satellite stereoscopic imagery represents a good example of passive, multi-view imaging technology, discussed in Chap. 2 of this book, InSAR and LIDAR use different principles to acquire 3D information. With regard to InSAR and LIDAR, detailed discussions are conducted in order to convey the fundamentals of both technologies.
Resumo:
Once you have generated a 3D model of a protein, how do you know whether it bears any resemblance to the actual structure? To determine the usefulness of 3D models of proteins, they must be assessed in terms of their quality by methods that predict their similarity to the native structure. The ModFOLD4 server is the latest version of our leading independent server for the estimation of both the global and local (per-residue) quality of 3D protein models. The server produces both machine readable and graphical output, providing users with intuitive visual reports on the quality of predicted protein tertiary structures. The ModFOLD4 server is freely available to all at: http://www.reading.ac.uk/bioinf/ModFOLD/.
Resumo:
In this paper, we consider multiple-input multiple- output (MIMO) maximal ratio combining (MRC) systems and assess the system performance in terms of average symbol error probability (SEP), outage probability and ergodic capacity in double-correlated Rayleigh-and-Lognormal fading channels. In order to derive the receive and transmit correlation functions needed for the performance analysis, a three-dimensional (3D) MIMO mobile-to-mobile (M-to-M) channel model, which takes into account the effects of fast fading and shadowing is used. Numerical results are provided to show the effects of system parameters, such as maximum elevation angle of scatterers, orientation angle of antenna array in the x-y plane, angle between x-y plane and the antenna array orientation, and degree of scattering in the x-y plane, on the system performance.
Resumo:
The ability of six scanning cloud radar scan strategies to reconstruct cumulus cloud fields for radiation study is assessed. Utilizing snapshots of clean and polluted cloud fields from large eddy simulations, an analysis is undertaken of error in both the liquid water path and monochromatic downwelling surface irradiance at 870 nm of the reconstructed cloud fields. Error introduced by radar sensitivity, choice of radar scan strategy, retrieval of liquid water content (LWC), and reconstruction scheme is explored. Given an in␣nitely sensitive radar and perfect LWC retrieval, domain average surface irradiance biases are typically less than 3 W m␣2 ␣m␣1, corresponding to 5–10% of the cloud radiative effect (CRE). However, when using a realistic radar sensitivity of ␣37.5 dBZ at 1 km, optically thin areas and edges of clouds are dif␣cult to detect due to their low radar re-ectivity; in clean conditions, overestimates are of order 10 W m␣2 ␣m␣1 (~20% of the CRE), but in polluted conditions, where the droplets are smaller, this increases to 10–26 W m␣2 ␣m␣1 (~40–100% of the CRE). Drizzle drops are also problematic; if treated as cloud droplets, reconstructions are poor, leading to large underestimates of 20–46 W m␣2 ␣m␣1 in domain average surface irradiance (~40–80% of the CRE). Nevertheless, a synergistic retrieval approach combining the detailed cloud structure obtained from scanning radar with the droplet-size information and location of cloud base gained from other instruments would potentially make accurate solar radiative transfer calculations in broken cloud possible for the first time.
Resumo:
Spatial memory is important for locating objects in hierarchical data structures, such as desktop folders. There are, however, some contradictions in literature concerning the effectiveness of 3D user interfaces when compared to their 2D counterparts. This paper uses a task-based approach in order to investigate the effectiveness of adding a third dimension to specific user tasks, i.e. the impact of depth on navigation in a 3D file manager. Results highlight issues and benefits of using 3D interfaces for visual and verbal tasks, and introduces the possible existence of a correlation between aptitude scores achieved on the Guilford- Zimmerman Orientation Survey and Electroencephalography- measured brainwave activity as participants search for targets of variable perceptual salience in 2D and 3D environments.
Resumo:
Model quality assessment programs (MQAPs) aim to assess the quality of modelled 3D protein structures. The provision of quality scores, describing both global and local (per-residue) accuracy are extremely important, as without quality scores we are unable to determine the usefulness of a 3D model for further computational and experimental wet lab studies.Here, we briefly discuss protein tertiary structure prediction, along with the biennial Critical Assessment of Techniques for Protein Structure Prediction (CASP) competition and their key role in driving the field of protein model quality assessment methods (MQAPs). We also briefly discuss the top MQAPs from the previous CASP competitions. Additionally, we describe our downloadable and webserver-based model quality assessment methods: ModFOLD3, ModFOLDclust, ModFOLDclustQ, ModFOLDclust2, and IntFOLD-QA. We provide a practical step-by-step guide on using our downloadable and webserver-based tools and include examples of their application for improving tertiary structure prediction, ligand binding site residue prediction, and oligomer predictions.
Resumo:
The University of Reading’s first Massive Open Online Course (MOOC) “Begin Programming: Build your first mobile game” (#FLMobiGame) was offered in Autumn 2013 on the FutureLearn platform. This course used a simple Android game framework to present basic programming concepts to complete beginners. The course attracted wide interest from all age groups. The course presented opportunities and challenges to both participants and educators. While some participants had difficulties accessing content some others had trouble grasping the concepts and applying them in a real program. Managing forums was cumbersome with the limited facilities supported by the Beta-platform. A healthy community was formed around the course with the support of social media. The case study reported here is part of an ongoing research programme exploring participants’ MOOC engagement and experience using a grounded, ethnographical approach.
Resumo:
The 3D shape of an object and its 3D location have traditionally thought of as very separate entities, although both can be described within a single 3D coordinate frame. Here, 3D shape and location are considered as two aspects of a view-based approach to representing depth, avoiding the use of 3D coordinate frames.
Resumo:
The approach of reaggregation involves the regeneration and self-renewal of histotypical 3D spheres from isolated tissue kept in suspension culture. Reaggregated spheres can be used as tumour, genetic, biohybrid and neurosphere models. In addition the functional superiority of 3D aggregates over conventional 2D cultures developed the use of neurospheres for brain engineering of CNS diseases. Thus 3D aggregate cultures created enormous interest in mechanisms that regulate the formation of multicellular aggregates in vitro. Here we analyzed mechanisms guiding the development of 3D neurosphere cultures. Adult neural stem cells can be cultured as self-adherent clusters, called neurospheres. Neurospheres are characterised as heterogeneous clusters containing unequal stem cell sub-types. Tumour necrosis factor-alpha (TNF-alpha is one of the crucial inflammatory cytokines with multiple actions on several cell types. TNF-alpha strongly activates the canonical Nuclear Factor Kappa-B (NF- kappaB) pathway. In order to investigate further functions of TNF in neural stem cells (NSCs) we tested the hypothesis that TNF is able to modulate the motility and/or migratory behaviour of SVZ derived adult neural stem cells. We observed a significantly faster sphere formation in TNF treated cultures than in untreated controls. The very fast aggregation of isolated NSCs (<2h) is a commonly observed phenomenon, though the mechanisms of 3D neurosphere formation remain largely unclear. Here we demonstrate for the first time, increased aggregation and enhanced motility of isolated NSCs in response to the TNF-stimulus. Moreover, this phenomenon is largely dependent on activated transcription factor NF-kappaB. Both, the pharmacological blockade of NF-kappaB pathway by pyrrolidine dithiocarbamate (PDTC) or Bay11-7082 and genetic blockade by expression of a transdominant-negative super-repressor IkappaB-AA1 led to decreased aggregation.
Resumo:
Due to their broad differentiation potential and their persistence into adulthood, human neural crest-derived stem cells (NCSCs) harbour great potential for autologous cellular therapies, which include the treatment of neurodegenerative diseases and replacement of complex tissues containing various cell types, as in the case of musculoskeletal injuries. The use of serum-free approaches often results in insufficient proliferation of stem cells and foetal calf serum implicates the use of xenogenic medium components. Thus, there is much need for alternative cultivation strategies. In this study we describe for the first time a novel, human blood plasma based semi-solid medium for cultivation of human NCSCs. We cultivated human neural crest-derived inferior turbinate stem cells (ITSCs) within a blood plasma matrix, where they revealed higher proliferation rates compared to a standard serum-free approach. Three-dimensionality of the matrix was investigated using helium ion microscopy. ITSCs grew within the matrix as revealed by laser scanning microscopy. Genetic stability and maintenance of stemness characteristics were assured in 3D cultivated ITSCs, as demonstrated by unchanged expression profile and the capability for self-renewal. ITSCs pre-cultivated in the 3D matrix differentiated efficiently into ectodermal and mesodermal cell types, particularly including osteogenic cell types. Furthermore, ITSCs cultivated as described here could be easily infected with lentiviruses directly in substrate for potential tracing or gene therapeutic approaches. Taken together, the use of human blood plasma as an additive for a completely defined medium points towards a personalisable and autologous cultivation of human neural crest-derived stem cells under clinical grade conditions.
Resumo:
A virtual system that emulates an ARM-based processor machine has been created to replace a traditional hardware-based system for teaching assembly language. The proposed virtual system integrates, in a single environment, all the development tools necessary to deliver introductory or advanced courses on modern assembly language programming. The virtual system runs a Linux operating system in either a graphical or console mode on a Windows or Linux host machine. No software licenses or extra hardware are required to use the virtual system, thus students are free to carry their own ARM emulator with them on a USB memory stick. Institutions adopting this, or a similar virtual system, can also benefit by reducing capital investment in hardware-based development kits and enable distance learning courses.
Resumo:
There is strong evidence from animal studies that prenatal stress has different effects on male and female offspring. In general, although not always, prenatal stress increases anxiety, depression and stress responses, both hypothalamic–pituitary–adrenal and cardiovascular, in female offspring rather than in male. Males are more likely to show learning and memory deficits. There have been few studies so far in humans which differentiate effects of prenatal stress on male and female psychopathology. Some studies support the animal models, but the evidence is inconsistent. The mediating mechanisms for any sex specific effects are little understood, but there is evidence that placental function can differ depending on the sex of the fetus. We suggest that there may be an evolutionary reason for any sex differences in the long term effects of prenatal stress. In a stressful environment it may be adaptive for females, who are more likely to stay in one place and look after children, to be more vigilant, alert to danger and thus show more stress responsiveness. This can give rise to a more anxious or depressed phenotype. With males it may be more adaptive to go out and explore new environments, compete with other males, and be more aggressive. For this it may help to be less responsive to external stressors. More research is needed into sex differences in the effects of prenatal stress in humans, to test these ideas.
Resumo:
Associations between low birth weight and prenatal anxiety and later psychopathology may arise from programming effects likely to be adaptive under some, but not other, environmental exposures and modified by sex differences. If physiological reactivity, which also confers vulnerability or resilience in an environment-dependent manner, is associated with birth weight and prenatal anxiety, it will be a candidate to mediate the links with psychopathology. From a general population sample of 1,233 first-time mothers recruited at 20 weeks gestation, a sample of 316 stratified by adversity was assessed at 32 weeks and when their infants were aged 29 weeks (N = 271). Prenatal anxiety was assessed by self-report, birth weight from medical records, and vagal reactivity from respiratory sinus arrhythmia during four nonstressful and one stressful (still-face) procedure. Lower birth weight for gestational age predicted higher vagal reactivity only in girls (interaction term, p = .016), and prenatal maternal anxiety predicted lower vagal reactivity only in boys (interaction term, p = .014). These findings are consistent with sex differences in fetal programming, whereby prenatal risks are associated with increased stress reactivity in females but decreased reactivity in males, with distinctive advantages and penalties for each sex.