963 resultados para 260206 Earthquake Seismology
Resumo:
Fishery science pioneers often faced challenges in their field work that are mostly unknown to modern biologists. Some of the travails faced by ichthyologist and, later, fishery biologist Charles Henry Gilbert (1859-1928) during his service as Naturalist-in-Charge of the North Pacific cruise ofthe U.S. Bureau of Fisheries Steamer Albatross in 1906, are described here, as are accomplishments of the cruise. The vessel left San Francisco, Calif., on 3 May 1906, just after the great San Francisco earthquake, for scientific exploration of waters of the Aleutian islands, Bering Sea, Kamchatka, Sakhalin, and Japan, returning to San Francisco in December. Because the expedition occurred just after the war between Japan and Russia of 1904-05 floating derelict mines in Japanese waters were often a menace. Major storms caused havoc in the region, and the captain of the Albatross, Lieutenant Commander LeRoy Mason Garrett (1857-1906), U.S.N., was lost at sea, apparently thrown from the vessel during a sudden storm on the return leg of the cruise. Despite such obstacles, Gilbert and the Albatross successfully completed their assigned chores. They occupied 339 dredging and 48 hydrographic stations, and discovered over 180 new species of fishes and many new species of invertebrates. The expedition's extensive biological collections spawned over 30 descriptive publications, some of which remain today as standards of knowledge.
Monitoring report: sand dune reconstruction and restoration, at the Moss Landing Marine Laboratories
Resumo:
The Plan for Sand Dune Reconstruction and Restoration (and Biological Assessment) at Moss Landing Marine Laboratories (ABA Consultants, April 1, 1992) described reconstruction of dune contours and biological restoration with native dune plants to be carried out over the 8 acre site formerly occupied by the marine labs (prior to the Loma Prieta earthquake of October 1989). The plan called for annual reports in letter form which would present data on plant abundance, a short narrative description of changes on the site, progress towards recovery of the plant community, and assessment of progress based on restoration goals and further steps to be taken. This monitoring report [dated April 25, 1994] addresses those points and also contains a summary of other activities integral in dune restoration -- education, public participation, school and conservation organization field trips, as well as the associated activities of restoration, plant collecting, propagation, and weed control.
Resumo:
•2011 PICES Science: A Note from the Science Board Chairman (pp. 1-6) •2011 PICES Awards (pp. 7-9) •Beyond the Terrible Disaster of the Great East Japan Earthquake (pp. 10-12) •A New Era of PICES-ICES Scientific Cooperation (p. 13) •New PICES Jellyfish Working Group Formed (pp. 14-15) •PICES Working Group on North Pacific Climate Variability (pp. 16-18) •Final U.S. GLOBEC Symposium and Celebration (pp. 19-25) •2011 PICES Rapid Assessment Survey (pp. 26-29) •Introduction to Rapid Assessment Survey Methodologies for Detecting Non-indigenous Marine Species (pp. 30-31) •The 7th International Conference on Marine Bioinvasions (pp. 32-33) •NOWPAP/PICES/WESTPAC Training Course on Remote Sensing Data Analysis (pp. 34-36) •PICES-2011 Workshop on “Trends in Marine Contaminants and their Effects in a Changing Ocean” (pp. 37-39) •The State of the Western North Pacific in the First Half of 2011 (pp. 40-42) •Yeosu Symposium theme sessions (p. 42) •The Bering Sea: Current Status and Recent Events (pp. 43-44) •News of the Northeast Pacific Ocean (pp. 45-47) •Recent and Upcoming PICES Publications (p. 47) •New leadership for the PICES Fishery Science Committee (p. 48)
Resumo:
Geomembranes are one of the most commonly used geosynthetics in landfill liner systems. They retain the leachate produced by the waste and prevent leakage. Geomembranes may experience harsh environmental conditions such as extreme temperatures or earthquake loading. Earthquake loading can be an extreme loading case for landfills located in seismic regions. This study, based on dynamic centrifuge testing, investigates the effects of simulated earthquake loading on the tension experienced bythe geomembrane on a landfill slope. The landfill modeled in the dynamic centrifuge test was a municipal solid waste (MSW) landfill cell with a single geomembrane-clay liner system (45° side slope and 10 m slope length). The paper shows that moderate earthquake loading (base acceleration between 0.1g to 0.2g) can result in transient increases of around 20% in geomembrane tension, with permanent tension increases of around 5%.
Resumo:
Residential RC framed structures suffered heavily during the 2001 Bhuj earthquake in Gujarat, India. These types of structures also saw severe damage in other earthquakes such as the 1999 Kocaeli earthquake in Turkey and 921 Ji-Ji earthquake in Taiwan. In this paper the seismic response of residential structures was investigated using physical modelling. Idealised soft storey and top heavy, two degrees of freedom (2DOF) portal frame structures were developed and tested on saturated and dry sand models at 25 g using the Schofield Centre 10-m Beam Centrifuge. It was possible to recreate observed field behaviour using these models. As observed in many of the recent earthquakes, soft storey structures were found to be particularly vulnerable to seismic loads. Elastic response spectra methods are often used in the design of simple portal frame structures. The seismic risk of these structures can be significantly increased due to modifications such as removal of a column or addition of heavy water tanks on the roof. The experimental data from the dynamic centrifuge tests on such soft storey or top-heavy models was used to evaluate the predictions obtained from the response spectra. Response spectra were able to predict seismic response during small to moderate intensity earthquakes, but became inaccurate during strong earthquakes and when soil structure interaction effects became important. Re-evaluation of seismic risk of such modified structures is required and time domain analyses suggested by building codes such as IBC, UBC or NEHRP may be more appropriate. © Springer 2006.
Resumo:
Soil liquefaction continues to be a major source of damage to buildings and infrastructure after major earthquake events. Ground improvement methods are widely used at many sites worldwide as a way of mitigating liquefaction damage. The relative success of these ground improvement methods in preventing damage after a liquefaction event and the mechanisms by which they can mitigate liquefaction continue to be areas of active research. In this paper the emphasis is on the use of dynamic centrifuge modelling as a tool to investigate the effectiveness of ground improvement methods in mitigating liquefaction risk. Three different ground improvement methods will be considered. First, the effectiveness of in situ densification as a liquefaction resistance measure will be investigated. It will be shown that the mechanism by which soil densification offers mitigation of the liquefaction risk can be studied at a fundamental level using dynamic centrifuge modelling. Second, the use of drains to relieve excess pore pressures generated during an earthquake event will be considered. It will be shown that current design methods can be further improved by incorporating the understanding obtained from dynamic centrifuge tests. Finally, the use of soil grouting to mitigate liquefaction risk will be investigated. It will be shown that by grouting the foundation soil, the settlement of a building can be reduced following earthquake loading. However, the grouting depth must extend the whole depth of the liquefiable layer to achieve this reduction in settlements.