989 resultados para 2 sigma
Resumo:
Pseudomonas fluorescens Pf-5, a rhizosphere-inhabiting bacterium that suppresses several soilborne pathogens of plants, produces the antibiotics pyrrolnitrin, pyoluteorin, and 2,4-diacetylphloroglucinol. A gene necessary for pyrrolnitrin production by Pf-5 was identified as rpoS, which encodes the stationary-phase sigma factor sigma s. Several pleiotropic effects of an rpoS mutation in Escherichia coli also were observed in an RpoS- mutant of Pf-5. These included sensitivities of stationary-phase cells to stresses imposed by hydrogen peroxide or high salt concentration. A plasmid containing the cloned wild-type rpoS gene restored pyrrolnitrin production and stress tolerance to the RpoS- mutant of Pf-5. The RpoS- mutant overproduced pyoluteorin and 2,4-diacetyl-phloroglucinol, two antibiotics that inhibit growth of the phytopathogenic fungus Pythium ultimum, and was superior to the wild type in suppression of seedling damping-off of cucumber caused by Pythium ultimum. When inoculated onto cucumber seed at high cell densities, the RpoS- mutant did not survive as well as the wild-type strain on surfaces of developing seedlings. Other stationary-phase-specific phenotypes of Pf-5, such as the production of cyanide and extracellular protease(s) were expressed by the RpoS- mutant, suggesting that sigma s is only one of the sigma factors required for the transcription of genes in stationary-phase cells of P. fluorescens. These results indicate that a sigma factor encoded by rpoS influences antibiotic production, biological control activity, and survival of P. fluorescens on plant surfaces.
Resumo:
N-Methyl-D-aspartate (NMDA, 200 microM) evokes the release of [3H]norepinephrine ([3H]NE) from preloaded hippocampal slices. This effect is potentiated by dehydroepiandrosterone sulfate (DHEA S), whereas it is inhibited by pregnenolone sulfate (PREG S) and the high-affinity sigma inverse agonist 1,3-di(2-tolyl)guanidine, at concentrations of > or = 100 nM. Neither 3 alpha-hydroxy-5 alpha-pregnan-20-one nor its sulfate ester modified NMDA-evoked [3H]NE overflow. The sigma antagonists haloperidol and 1-[2-(3,4-dichlorophenyl)-ethyl]-4-methylpiperazine, although inactive by themselves, completely prevented the effects of DHEA S, PREG S, and 1,3-di(2-tolyl)guanidine on NMDA-evoked [3H]NE release. Progesterone (100 nM) mimicked the antagonistic effect of haloperidol and 1-[2-(3,4-dichlorophenyl)ethyl]-4-methyl-piperazine. These results indicate that the tested steroid sulfate esters differentially affected the NMDA response in vitro and suggest that DHEA S acts as a sigma agonist, that PREG S acts as a sigma inverse agonist, and that progesterone may act as a sigma antagonist. Pertussis toxin, which inactivates the Gi/o types of guanine nucleotide-binding protein (Gi/o protein) function, suppresses both effects of DHEA S and PREG S. Since sigma 1 but not sigma 2 receptors are coupled to Gi/o proteins, the present results suggest that DHEA S and PREG S control the NMDA response via sigma 1 receptors.
Resumo:
Flagellin is one of the most abundant proteins in motile bacteria, yet its expression requires a low abundance sigma factor (sigma 28). We show that transcription from the Bacillus subtilis flagellin promoter is stimulated 20-fold by an upstream A+T-rich region [upstream promoter (UP) element] both in vivo and in vitro. This UP element is contacted by sigma 28 holoenzyme bound at the flagellin promoter and binds the isolated alpha 2 subassembly of RNA polymerase. The UP element increases the affinity of RNA polymerase for the flagellin promoter and stimulates transcription when initiation is limited by the rate of RNA polymerase binding. Comparison with other promoters in the flagellar regulon reveals a bipartite architecture: the -35 and -10 elements confer specificity for sigma 28, while promoter strength is determined largely by upstream DNA sequences.
Resumo:
Surface currents and sediment distribution of the SE South American upper continental margin are under influence of the South American Monsoon System (SAMS) and the Southern Westerly Wind Belt (SWWB). Both climatic systems determine the meridional position of the Subtropical Shelf Front (STSF) and probably also of the Brazil-Malvinas Confluence (BMC). We reconstruct the changing impact of the SAMS and the SWWB on sediment composition at the upper Rio Grande Cone off southern Brazil during the last 14 cal kyr combining sedimentological, geochemical, micropaleontological and rock magnetic proxies of marine sediment core GeoB 6211-2. Sharp reciprocal changes in ferri- and paramagnetic mineral content and prominent grain-size shifts give strong clues to systematic source changes and transport modes of these mostly terrigenous sediments. Our interpretations support the assumption that the SAMS over SE South America was weaker than today during most of the Late Glacial and entire Early Holocene, while the SWWB was contracted to more southern latitudes, resembling modern austral summer-like conditions. In consequence, the STSF and the BMC were driven to more southern positions than today's, favoring the deposition of Fe-rich but weakly magnetic La Plata River silts at the Rio Grande Cone. During the Mid Holocene, the northern boundary of the SWWB migrated northward, while the STSF reached its northernmost position of the last 14 cal kyr and the BMC most likely arrived at its modern position. This shift enabled the transport of Antarctic diatoms and more strongly magnetic Argentinean shelf sands to the Rio Grande Cone, while sediment contributions from the La Plata River became less important. During the Late Holocene, the modern El Niño Southern Oscillation set in and the SAMS and the austral tradewinds intensified, causing a southward shift of the STSF to its modern position. This reinforced a significant deposition of La Plata River silts at the Rio Grande Cone. These higher magnetic silts with intermediate Fe contents mirror the modern more humid terrestrial climatic conditions over SE South America.
Resumo:
In formula in title, k̳ is subscript directly beneath superscript 2.
Resumo:
We use series expansion methods to calculate the dispersion relation of the one-magnon excitations for the spin-(1)/(2) triangular-lattice nearest-neighbor Heisenberg antiferromagnet above a three-sublattice ordered ground state. Several striking features are observed compared to the classical (large-S) spin-wave spectra. Whereas, at low energies the dispersion is only weakly renormalized by quantum fluctuations, significant anomalies are observed at high energies. In particular, we find rotonlike minima at special wave vectors and strong downward renormalization in large parts of the Brillouin zone, leading to very flat or dispersionless modes. We present detailed comparison of our calculated excitation energies in the Brillouin zone with the spin-wave dispersion to order 1/S calculated recently by Starykh, Chubukov, and Abanov [Phys. Rev. B74, 180403(R) (2006)]. We find many common features but also some quantitative and qualitative differences. We show that at temperatures as low as 0.1J the thermally excited rotons make a significant contribution to the entropy. Consequently, unlike for the square lattice model, a nonlinear sigma model description of the finite-temperature properties is only applicable at temperatures < 0.1J. Finally, we review recent NMR measurements on the organic compound kappa-(BEDT-TTF)(2)Cu-2(CN)(3). We argue that these are inconsistent with long-range order and a description of the low-energy excitations in terms of interacting magnons, and that therefore a Heisenberg model with only nearest-neighbor exchange does not offer an adequate description of this material.
Resumo:
Extremely low summer sea-ice coverage in the Arctic Ocean in 2007 allowed extensive sampling and a wide quasi-synoptic hydrographic and d18O dataset could be collected in the Eurasian Basin and the Makarov Basin up to the Alpha Ridge and the East Siberian continental margin. With the aim of determining the origin of freshwater in the halocline, fractions of river water and sea-ice meltwater in the upper 150 m were quantified by a combination of salinity and d18O in the Eurasian Basin. Two methods, applying the preformed phosphate concentration (PO*) and the nitrate-to-phosphate ratio (N/P), were compared to further differentiate the marine fraction into Atlantic and Pacific-derived contributions. While PO*-based assessments systematically underestimate the contribution of Pacific-derived waters, N/P-based calculations overestimate Pacific-derived waters within the Transpolar Drift due to denitrification in bottom sediments at the Laptev Sea continental margin. Within the Eurasian Basin a west to east oriented front between net melting and production of sea-ice is observed. Outside the Atlantic regime dominated by net sea-ice melting, a pronounced layer influenced by brines released during sea-ice formation is present at about 30 to 50 m water depth with a maximum over the Lomonosov Ridge. The geographically distinct definition of this maximum demonstrates the rapid release and transport of signals from the shelf regions in discrete pulses within the Transpolar Drift. The ratio of sea-ice derived brine influence and river water is roughly constant within each layer of the Arctic Ocean halocline. The correlation between brine influence and river water reveals two clusters that can be assigned to the two main mechanisms of sea-ice formation within the Arctic Ocean. Over the open ocean or in polynyas at the continental slope where relatively small amounts of river water are found, sea-ice formation results in a linear correlation between brine influence and river water at salinities of about 32 to 34. In coastal polynyas in the shallow regions of the Laptev Sea and southern Kara Sea, sea-ice formation transports river water into the shelf's bottom layer due to the close proximity to the river mouths. This process therefore results in waters that form a second linear correlation between brine influence and river water at salinities of about 30 to 32. Our study indicates which layers of the Arctic Ocean halocline are primarily influenced by sea-ice formation in coastal polynyas and which layers are primarily influenced by sea-ice formation over the open ocean. Accordingly we use the ratio of sea-ice derived brine influence and river water to link the maximum in brine influence within the Transpolar Drift with a pulse of shelf waters from the Laptev Sea that was likely released in summer 2005.