990 resultados para 168-1029
Resumo:
Background: A number of epidemiological studies have been conducted to research the adverse effects of air pollution on mortality and morbidity. Hypertension is the most important risk factor for cardiovascular mortality. However, few previous studies have examined the relationship between gaseous air pollution and morbidity for hypertension. ---------- Methods: Daily data on emergency hospital visits (EHVs) for hypertension were collected from the Peking University Third Hospital. Daily data on gaseous air pollutants (sulfur dioxide (SO2) and nitrogen dioxide (NO2)) and particulate matter less than 10 μm in aerodynamic diameter (PM10) were collected from the Beijing Municipal Environmental Monitoring Center. A time-stratified case-crossover design was conducted to evaluate the relationship between urban gaseous air pollution and EHVs for hypertension. Temperature and relative humidity were controlled for. ---------- Results: In the single air pollutant models, a 10 μg/m3 increase in SO2 and NO2 were significantly associated with EHVs for hypertension. The odds ratios (ORs) were 1.037 (95% confidence interval (CI): 1.004-1.071) for SO2 at lag 0 day, and 1.101 (95% CI: 1.038-1.168) for NO2 at lag 3 day. After controlling for PM10, the ORs associated with SO2 and NO2 were 1.025 (95% CI: 0.987-1.065) and 1.114 (95% CI: 1.037-1.195), respectively.---------- Conclusion: Elevated urban gaseous air pollution was associated with increased EHVs for hypertension in Beijing, China.
Resumo:
Hong Kong is a modern global city with a reputation for well-regulated financial markets, but for years, the government had been trying to enact laws on corporate rescue procedures with relatively little success. It is under the pretext of the Global Financial Crisis, the threat of a future economic meltdown gave the Hong Kong government the impetus to revisit this issue. This third attempt to codify statutory obligations on directors’ liability for insolvent trading has been criticised for either setting the standards too high or low for directors trading whilst insolvent. There is also some reservation given the beliefs and values of directors in Chinese family-owned and controlled companies. These companies would most likely trade out the difficult times. Nevertheless, this does not negate from the fact that the enactment of corporate rescue procedures in Hong Kong in 2010 is a momentous achievement for the Hong Kong government.
Resumo:
Many minerals based upon antimonite and antimonate anions remain to be studied. Most of the bands occur in the low wavenumber region, making infrared spectroscopy difficult to use. This problem can be overcome by using Raman spectroscopy. Raman spectra of the mineral klebelsbergite Sb4O4(OH)2(SO4) were studied, and related to the structure of the mineral. Raman bands observed at 971 cm-1 and a series of overlapping bands are observed at 1029, 1074, 1089, 1139 and 1142 cm-1 are assigned to the SO42- ν1 symmetric and ν3 antisymmetric stretching modes. Two Raman bands are observed at 662 and 723 cm-1 and assigned to the SbO ν3 antisymmetric and ν1 symmetric stretching modes. The intense Raman bands at 581, 604 and 611 cm-1 are assigned to the ν4 SO42- bending modes. Two overlapping bands at 481 and 489 cm-1 are assigned to the ν2 SO42- bending mode. Low intensity bands at 410, 435 and 446 cm-1 may be attributed to OSbO bending modes. The Raman band at 3435 cm-1 is attributed to the OH stretching vibration of the OH units. Multiple Raman bands for both SO42- and SbO stretching vibrations support the concept of the non-equivalence of these units in the klebelsbergite structure. It is proposed that two sulphate anions are distorted to different extents in the klebelsbergite structure.
Resumo:
The process of offsetting land against unavoidable disturbance of development sites in Queensland will benefit from a method that allows the best possible selection to be made of alternative lands. With site selection now advocated through a combination of Regional Ecosystem and Land Capability classifications state-wide, a case study has determined methods of assessing the functional lift – that is, measures of net environmental gain – of such action. Outcomes with potentially high functional lift are determined, that offer promise not only for endangered ecosystems but also for managing adjacent conservation reserves.
Resumo:
Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.
Resumo:
Raman spectroscopy has been used to study selected mineral samples of the copiapite group. Copiapite (Fe2+Fe3+(SO4)6(OH)2 · 20H2O) is a secondary mineral formed through the oxidn. of pyrite. Minerals of the copiapite group have the general formula AFe4(SO4)6(OH)2 · 20H2O, where A has a + 2 charge and can be either magnesium, iron, copper, calcium and/or zinc. The formula can also be B2/3Fe4(SO4)6(OH)2 · 20H2O, where B has a + 3 charge and may be either aluminum or iron. For each mineral, two Raman bands are obsd. at around 992 and 1029 cm-1, assigned to the (SO4)2-ν1 sym. stretching mode. The observation of two bands provides evidence for the existence of two non-equiv. sulfate anions in the mineral structure. Three Raman bands at 1112, 1142 and 1161 cm-1 are obsd. in the Raman spectrum of copiapites, indicating a redn. of symmetry of the sulfate anion in the copiapite structure. This redn. in symmetry is supported by multiple bands in the ν2 and ν4(SO4)2- spectral regions.