934 resultados para 15N-glycine kinetics
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Pós-graduação em Ciências da Motricidade - IBRC
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objectives. The purpose of this study was to evaluate the reactivity and polymerization kinetics behavior of a model dental adhesive resin with water-soluble initiator systems. Methods. A monomer blend based on Bis-GMA, TEGDMA and HEMA was used as a model dental adhesive resin, which was polymerized using a thioxanthone type (QTX) as a photoinitiator. Binary and ternary photoinitiator systems were formulated using 1 mol% of each initiator. The co-initiators used in this study were ethyl 4-dimethylaminobenzoate (EDAB), diphenyliodonium hexafluorophosphate (DPIHFP), 1,3-diethyl-2-thiobarbituric acid (BARB), p-toluenesulfinic acid and sodium salt hydrate (SULF). Absorption spectra of the initiators were measured using a UV-Vis spectrophotometer, and the photon absorption energy (PAE) was calculated. The binary system camphorquinone (CQ)/amine was used as a reference group (control). Twelve groups were tested in triplicate. Fourier-transform infrared spectroscopy (FTIR) was used to investigate the polymerization reaction during the photoactivation period to obtain the degree of conversion (DC) and maximum polymerization rate (R-p(max)) profile of the model resin. Results. In the analyzed absorption profiles, the absorption spectrum of QTX is almost entirely localized in the UV region, whereas that of CQ is in the visible range. With respect to binary systems, CQ + EDAB exhibited higher DC and R-p(max) values. In formulations that contained ternary initiator systems, the group CQ + QTX + EDAB was the only one of the investigated experimental groups that exhibited an R-p(max) value greater than that of CQ + EDAB. The groups QTX + EDAB + DPIHFP and QTX + DPIHFP + SULF exhibited values similar to those of CQ + EDAB with respect to the final DC; however, they also exhibited lower reactivity. Significance. Water-soluble initiator systems should be considered as alternatives to the widely used CQ/amine system in dentin adhesive formulations. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
This paper compares the responses of conventional and transgenic soybean to glyphosate application in terms of the contents of 17 detectable soluble amino acids in leaves, analyzed by HPLC and fluorescence detection. Glutamate, histidine, asparagine, arginine + alanine, glycine + threonine and isoleucine increased in conventional soybean leaves when compared to transgenic soybean leaves, whereas for other amino acids, no significant differences were recorded. Univariate analysis allowed us to make an approximate differentiation between conventional and transgenic lines, observing the changes of some variables by glyphosate application. In addition, by means of the multivariate analysis, using principal components analysis (PCA), cluster analysis (CA) and linear discriminant analysis (LDA) it was possible to identify and discriminate different groups based on the soybean genetic origin. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We report cross sections for elastic electron scattering by gas phase glycine (neutral form), obtained with the Schwinger multichannel method. The present results are the first obtained with a new implementation that combines parallelization with OpenMP directives and pseudopotentials. The position of the well known pi* shape resonance ranged from 2.3 eV to 2.8 eV depending on the polarization model and conformer. For the most stable isomer, the present result (2.4 eV) is in fair agreement with electron transmission spectroscopy assignments (1.93 +/- 0.05 eV) and available calculations. Our results also point out a shape resonance around 9.5 eV in the A' symmetry that would be weakly coupled to vibrations of the hydroxyl group. Since electron attachment to a broad and lower lying sigma* orbital located on the OH bond has been suggested the underlying mechanism leading to dissociative electron attachment at low energies, we sought for a shape resonance around similar to 4 eV. Though we obtained cross sections with the target molecule at the equilibrium geometry and with stretched OH bond lengths, least-squares fits to the calculated eigenphase sums did not point out signatures of this anion state (though, in principle, it could be hidden in the large background). The low energy (similar to 1 eV) integral cross section strongly scales as the bond length is stretched, and this could indicate a virtual state pole, since dipole supported bound states are not expected at the geometries addressed here. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3687345]
Resumo:
The kinetics of the homogeneous acylation of microcrystalline cellulose, MCC, with carboxylic acid anhydrides with different acyl chain-length (Nc; ethanoic to hexanoic) in LiCl/N,N-dimethylacetamide have been studied by conductivity measurements from 65 to 85 A degrees C. We have employed cyclohexylmethanol, CHM, and trans-1,2-cyclohexanediol, CHD, as model compounds for the hydroxyl groups of the anhydroglucose unit of cellulose. The ratios of rate constants of acylation of primary (CHM; Prim-OH) and secondary (CHD; Sec-OH) groups have been employed, after correction, in order to split the overall rate constants of the reaction of MCC into contributions from the discrete OH groups. For the model compounds, we have found that k((Prim-OH))/k((Sec-OH)) > 1, akin to reactions of cellulose under heterogeneous conditions; this ratio increases as a function of increasing Nc. The overall, and partial rate constants of the acylation of MCC decrease from ethanoic- to butanoic-anhydride and then increase for pentanoic- and hexanoic anhydride, due to subtle changes in- and compensations of the enthalpy and entropy of activation.
Resumo:
OBJECTIVE: Glucose intolerance is frequently associated with an altered plasma lipid profile and increased cardiovascular disease risk. Nonetheless, lipid metabolism is scarcely studied in normolipidemic glucose-intolerant patients. The aim of this study was to investigate whether important lipid metabolic parameters, such as the kinetics of LDL free and esterified cholesterol and the transfer of lipids to HDL, are altered in glucose-intolerant patients with normal plasma lipids. METHODS: Fourteen glucose-intolerant patients and 15 control patients were studied; none of the patients had cardiovascular disease manifestations, and they were paired for age, sex, race and co-morbidities. A nanoemulsion resembling a LDL lipid composition (LDE) labeled with C-14-cholesteryl ester and H-3-free cholesterol was intravenously injected, and blood samples were collected over a 24-h period to determine the fractional clearance rate of the labels by compartmental analysis. The transfer of free and esterified cholesterol, triglycerides and phospholipids from the LDE to HDL was measured by the incubation of the LDE with plasma and radioactivity counting of the supernatant after chemical precipitation of non-HDL fractions. RESULTS: The levels of LDL, non-HDL and HDL cholesterol, triglycerides, apo A1 and apo B were equal in both groups. The 14 C-esterified cholesterol fractional clearance rate was not different between glucose-intolerant and control patients, but the H-3-free- cholesterol fractional clearance rate was greater in glucose-intolerant patients than in control patients. The lipid transfer to HDL was equal in both groups. CONCLUSION: In these glucose-intolerant patients with normal plasma lipids, a faster removal of LDE free cholesterol was the only lipid metabolic alteration detected in our study. This finding suggests that the dissociation of free cholesterol from lipoprotein particles occurs in normolipidemic glucose intolerance and may participate in atherogenic signaling.
Resumo:
There are currently many types of protective materials for reinforced concrete structures and the influence of these materials in the chloride diffusion coefficient and water penetration still needs more research. The aim of this work is to analyze the contributions regarding the typical three surface concrete protection systems (coatings, linings and pore blockers) and discusses the results of three pore blockers (sodium silicate) tested in this work. To this end, certain tests were used: one involving permeability mechanism (low pressure-immersion absorption), one involving capillary water absorption, and the last, a migration test used to estimate the effective chloride diffusion coefficient in saturated condition. Results indicated reduction in chloride diffusion coefficients and capillary water absorption, therefore, restrictions to water penetration from external environmental. As a consequence, a reduction of the corrosion kinetics and a control of the chloride ingress are expected.
Resumo:
In the present work we revisit the size data of CdS microcrystals previously collected in the glassy matrix of Germanium oxide. The CdS clusters analyzed using electron microscopy images have shown a wurtzite structure. The mean average radius, dispersion and volume evaluated from the histograms showed good agreement for t(1/3), t(2/3) and t laws, respectively. We observed that the amount of microcrystals remains constant throughout the heat treatment process, as well as that the radii distribution has a lower limit and increases with heat treatment. The distribution of radii follows a distribution similar to the Lifshitz-Slyozov-Wagner distribution limited in the origin. Discussions led to the conclusion that the growth of CdS is a process that occurs after the fluctuating nucleation and coalescence phases. We then analyze the growth process, assuming that the evaporation is overcome by the precipitation rate, stabilizing all clusters with respect to dissolution back into the matrix. The problem was simplified neglecting anisotropy and the assuming a spherical shape for clusters and particles. The low interface tension was described in terms of an empirical potential barrier in the surface of the cluster. The growth dynamics developed considering that the number of clusters remains constant, and that the minimum size of these clusters grow with time, as the first order approximation showed a good agreement with the flaw. (C) 2012 Elsevier B.V. All rights reserved.