991 resultados para 100 kyr tuning
Resumo:
Post-synthetic modification (PSM) of metal-organic frameworks encompassing the chemical transformation of the linker present is a promising new route for engineering optical centres and tuning the light emission properties of materials, both in the visible and in the near infrared (NIR) spectral regions. Here, PSM of isoreticular metal-organic framework-3 (IRMOF-3) with ethyl oxalyl monochloride, ethyl acetoacetate, pentane-2,4-dione, 3-(2- hydroxyphenyl)-3-oxopropanal, 2-chloroacetic acid, glyoxylic acid, methyl vinyl ketone and diethyl (ethoxymethylene)malonate followed by chelation of trivalent lanthanide ions afforded intriguing near infrared (Nd3+) and visible (Eu3+, Tb3+) light emitters. IRMOF-3 was used as a case in point due to both its highly porous crystalline structure and the presence of non-coordinating amino groups on the benzenedicarboxylate (bdc) linker amenable to modification. The materials were characterised by elemental analysis, powder X-ray diffraction, optical, scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, and liquid and solid-state nuclear magnetic resonance. The solid-state luminescence properties of Ln-modified-IRMOF-3 were investigated at room temperature. The presence of the bdc aromatic ring, β– diketonate and oxalate enhanced the Ln3+ sensitization via ligand-to-metal energy transfer (anthena effect). As far as photocalysis is concerned, we have synthesized metal−organic frameworks (Cr-MIL-125-AC, Ag-MIL-125-AC) by a green method (solid–vapors reactions). The resulting functionalized materials show a photocatalytic activity for methylene blue degradation up to 6.52 times larger than that of the commercial photocatalyst hombikat UV-100. These findings open the door for further research for improving the photocatalytic performance of metal-organic frameworks.
Resumo:
ln a context where widespread failings in the nature of terrorism research are well recognised - yet where the quantity of work is still enormous - is it possible to fairly assess whether the field is progressing or if it has become mired in mediocre research? Citation analysis is widely used to reveal the evolution and extent of progress in fields of study and to provide valuable insight into major trends and achievements. This study identifies and analyses the current 100 most cited journal articles in terrorism studies. A search was performed using Google Scholar for peer reviewed journal articles on subjects related to terrorism and counter-terrorism. The most cited papers were published across 62 journals which reflected the interdisciplinary nature of terrorism studies. Compared to other articles, the most cited papers were more likely to be the result of colloborative research and were also more likely to provide new data. 63 of the top 1-00 articles have been published since 2001. The findings are discussed in relation to the evolution of terrorism research and current debates on progress in the field.
Resumo:
Neural networks and genetic algorithms have been in the past successfully applied, separately, to controller turning problems. In this paper we propose to combine its joint use, by exploiting the nonlinear mapping capabilites of neural networks to model objective functions, and to use them to supply their values to a genetic algorithm which performs on-line minimization.
Resumo:
Kritische Auseinandersetzung mit dem Leben und Wirken Erwin Ackerknechts.
Resumo:
The aim of this study is to analyse the influence of performance level, age and gender on pacing during a 100-km ultramarathon. Results of a 100-km race incorporating the World Masters Championships were used to identify differences in relative speeds in each 10-km segment between participants finishing in the first, second, third and fourth quartiles of overall positions (Groups 1, 2, 3 and 4, respectively). Similar analyses were performed between the top and bottom 50% of finishers in each age category, as well as within male and female categories. Pacing varied between athletes achieving different absolute performance levels. Group 1 ran at significantly lower relative speeds than all other groups in the first three 10-km segments (all P < 0.01), and significantly higher relative speeds than Group 4 in the 6th and 10th (both P < 0.01), and Group 2 in the 8th (P = 0.04). Group 4 displayed significantly higher relative speeds than Group 2 and 3 in the first three segments (all P < 0.01). Overall strategies remained consistent across age categories, although a similar phenomenon was observed within each category whereby ‘top’ competitors displayed lower relative speeds than ‘bottom’ competitors in the early stages, but higher relative speeds in the later stages. Females showed lower relative starting speeds and higher finishing speeds than males. ‘Top’ and ‘bottom’ finishing males displayed differing strategies, but this was not the case within females. Although pacing remained consistent across age categories, it differed with level of performance within each, possibly suggesting strategies are anchored on direct competitors. Strategy differs between genders and differs depending on performance level achieved in males but not females.
Resumo:
The scheduling problem is considered in complexity theory as a NP-hard combinatorial optimization problem. Meta-heuristics proved to be very useful in the resolution of this class of problems. However, these techniques require parameter tuning which is a very hard task to perform. A Case-based Reasoning module is proposed in order to solve the parameter tuning problem in a Multi-Agent Scheduling System. A computational study is performed in order to evaluate the proposed CBR module performance.
Resumo:
This study addresses the optimization of fractional algorithms for the discrete-time control of linear and non-linear systems. The paper starts by analyzing the fundamentals of fractional control systems and genetic algorithms. In a second phase the paper evaluates the problem in an optimization perspective. The results demonstrate the feasibility of the evolutionary strategy and the adaptability to distinct types of systems.
Resumo:
A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected performance up to 40 GHz. The similarity between the evolutionary solutions, circuit simulations, and measured results indicates that the genetic synthesis method is a very useful tool for designing optimum performance RFDSCAs.
Resumo:
The paper presents a RFDSCA automated synthesis procedure. This algorithm determines several RFDSCA circuits from the top-level system specifications all with the same maximum performance. The genetic synthesis tool optimizes a fitness function proportional to the RFDSCA quality factor and uses the epsiv-concept and maximin sorting scheme to achieve a set of solutions well distributed along a non-dominated front. To confirm the results of the algorithm, three RFDSCAs were simulated in SpectreRF and one of them was implemented and tested. The design used a 0.25 mum BiCMOS process. All the results (synthesized, simulated and measured) are very close, which indicate that the genetic synthesis method is a very useful tool to design optimum performance RFDSCAs.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica
Resumo:
Polyhydroxyalkanoates (PHA) production using mixed microbial cultures (MMC) requires a multi-stage process involving the microbial selection of PHA-storing microorganisms, typically operated in sequencing batch reactors (SBR), and an accumulation reactor. Since low-cost renewable feedstocks used as process feedstock are often nitrogen-deficient, nutrient supply in the selection stage is required to allow for microbial growth. In this context, the possibility to uncouple nitrogen supply from carbon feeding within the SBR cycle has been investigated in this study. Moreover, three different COD:N ratios (100:3.79, 100:3.03 and 100:2.43) were tested in three different runs which also allowed the study of COD:N ratio on the SBR performance. For each run, a synthetic mixture of acetic and propionic acids at an overall organic load rate of 8.5 gCOD L-1 d-1 was used as carbon feedstock, whereas ammonium sulfate was the nitrogen source in a lab-scale sequence batch reactor (SBR) with 1 L of working volume. Besides, a sludge retention time (SRT) of 1 d was used as well as a 6 h cycle length. The uncoupled feeding strategy significantly enhanced the selective pressure towards PHA-storing microorganisms, resulting in a two-fold increase in the PHA production (up to about 1.3 gCOD L-1). A high storage response was observed for the two runs with the COD:N ratios (gCOD:gN) of 100:3.79 and 100:3.03, whereas the lowest investigated nitrogen load resulted in very poor performance in terms of polymer production. In fact, strong nitrogen limitation caused fungi to grow and a very poor storage ability by microorganisms that thrived in those conditions. The COD:N ratio also affected the polymer composition, indeed the produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) showed a variable HV content (1-20 %, w/w) among the three runs, lessening as the COD:N increased. This clearly suggests the possibility to use the COD:N ratio as a tool for tuning polymer properties regardless the composition of the feedstock.