900 resultados para 1-BUTYL-3-METHYLIMIDAZOLIUM BROMIDE
Resumo:
C15HIoN404, monoclinic, P2~/c, a = 10.694(8), b = 11.743 (8), c - 12.658 (8) A, fl = 113.10 (7) °, V = 1462.1 A 3, Z = 4, O m = 1 "38, O c = 1.408 g cm -3, t,t(MoKa, ~, = 0.7107 ]~) = 0.99 cm -i, F(000) = 640. The structure was solved by direct methods and refined to an R value of 0.054 using 1398 intensity measurements. The relative magnitudes of interaction of the substituents and the extent to which a ring can accommodate interactions with substituents are discussed.
Resumo:
We apply our technique of using a Rb-stabilized ring-cavity resonator to measure the frequencies of various spectral components in the 555.8-nm 1S0-->3P1 line of Yb. We determine the isotope shifts with 60 kHz precision, which is an order-of-magnitude improvement over the best previous measurement on this line. There are two overlapping transitions, 171Yb(1/2-->3/2) and 173Yb(5/2-->3/2), which we resolve by applying a magnetic field. We thus obtain the hyperfine constants in the 3P1 state of the odd isotopes with a significantly improved precision. Knowledge of isotope shifts and hyperfine structure should prove useful for high-precision calculations in Yb necessary to interpret ongoing experiments testing parity and time-reversal symmetry violation in the laws of physics.
Resumo:
The title compound, C29H20ClNOS, is a 1-substituted-3-phenylisoquinoline that crystallizes with four independent molecules in the asymmtric unit. The four molecules have similar C-S-C angles. The most noteworthy differences between the molecules relate to the inclination of the 3-phenyl subsituent with respect to the isoquinoline fused-ring [dihedral angles of 21.2 (1), 25.6 (2), 34.3 (1) and 36.5 (2)degrees].
Resumo:
The conformation about the ethene bond [1.316 (3) angstrom] in the title compound, C25H18BrNO, is E. The quinoline ring forms dihedral angles of 67.21 (10) and 71.68 (10)degrees with the benzene and bromo-substituted benzene rings, respectively. High-lighting the non-planar arrangement of aromatic rings, the dihedral angle formed between the benzene rings is 58.57 (12)degrees.
Resumo:
A simple and direct approach to both enantiomeric series of A-ring derivatives of 1 alpha,25-dihydroxyvitamin D-3 and the corresponding 1 alpha,3 alpha-derivatives, starting from the abundantly available R-carvone, is described. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
C2H2N203.H20, Mr= 120.07, monoclinic,P21/c, a= 5.011 (1), b= 11.796(2), c= 7.689 (2)A,fl= 95.22 (2) ° , V= 452.61 A 3, Z= 4, Dx= 1.76, D m = 1.75 gcm -3, /].(Cu Ks) = 1.5418 A, g = 14-0 cm -l,F(000) = 248, T = 293 K, crystal quality was poor and the final R =0.107, wR =0.090 for 881 observed reflections. The compound is derived from a novel form of the monopropellant oxalohydroxamic acid. The two exocyclic C-O bond lengths of 1.240 (3) and 1.228 (4)A indicate double bonds. The C-N bond lengths of 1.334 (4), 1.390 (4) and 1.359 (4) A are characteristic of the amide bond. The N atom covalently bonded to the two carbonyl C atoms acts as a proton donor in an intermolecular hydrogen bond to the ring O atom: N1...O3i = 2.854 ]k (i =x-- 1,y, z), H...O = 2.15 A, N-H...O = 159 °.
Resumo:
Synthesis of 5, 5-dimethyl- 7-methoxy-4 -oxatricyclo[4,3,1,0(3,7)]- decan-2-one 3a, a novel heterocyclic ring system present in morellin 1, and its 3-substituted derivatives 3b-e, is described from the Diels-Alder adducts 7, available from 1-methoxycyclohexa-1,4-dienes 4. Two routes, which involved the halocyclisation and the oxidative addition, were investigated for the conversion of the adducts 7 into 3. While the halocyclisation method resulted in mixtures, excellent yields of the target molecule were obtained by the second method. Solvolysis of the bromoether 9 resulted in a mixture of rearranged products 10, 13, 15 and 16.
Resumo:
Potassamide induced in situ alkylation of 4-cyano-3-methoxy-1-methyl-5, 6-dihydroisoquinoline (1a) with allyl bromide gives the 5-allyl- and 5,9-diallyl-5,6-dihydroisoquinolines (1c and 1d), isoquinoline derivative 2 and 4-allyl-1, 2, 3, 4-tetrahydroisoquinolin-3(2H)-one (3a). However, potassamide induced in situ alkylation of In with buten-2-one, mesityl oxide and acrylonitrile results in the formation of only 5-alkylated 5,6-dihydroisoquinoline derivatives 1e-g along with fully aromatised compound 2.
Resumo:
Novel pyrroloisoquinolines 4 are obtained from 1-methyl-3,4-dihydroisoquinolines 1 by the action of POCl3 and DMF, along with the expected mono- and dialdehydes 2 and 3 respectively and also directly from N-acetyl-2-phenethylamines.
Resumo:
Reactivity switching and selective activation of C-1 or C-3 in 2,3-unsaturated thioglycosides, namely, 2,3-dideoxy-1-thio-D-hex-2-enopyranosides are reported. The reactivity switching allowed activation of either C-1 or C-3, with the use of either N-iodosuccinimide (NIS)/triflic acid (TfOH) or TfOH alone. C-1 glycosylation with alcohol acceptors occurred in the presence of NIS/TfOH, without the acceptors reacting at C-3. On the other hand, reaction of 2,3-unsaturated thioglycosides with alcohols mediated by triflic acid led to transposition of C-1 ethylthio-moiety to C-3 intramolecularly, to form 3-ethylthio-glycals. Resulting glycals underwent glycosylation with alcohols to afford 3-ethylthio-2-deoxy glycosides. However, when thiol was used as an acceptor, only a stereoselective addition at C-3 resulted, so as to form C-1, C-3 dithio-substituted 2-deoxypyranosides. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Tert-butyl 2,2-bis(2,4-dinitrophenyl)ethanoate was prepared from the ethanolic solution of 1-chloro-2,4-dinitrobenzene, tert-butyl 3-oxobutanoate and triethylamine. Acetyl group in tert-butyl 3-oxobutanoate has cleaved off during the formation of the title molecule. UV-VIS, IR, 1H NMR, 13C NMR, Proton-Proton COSY data and single crystal XRD results support the proposed structure. Flammability test, impact sensitivity test and TG/DTA studies at different heating rates on the synthesized molecule imply that it is an insensitive high energy density material.
Resumo:
In this article we present the syntheses, characterizations, magnetic and luminescence properties of five 3d-metal complexes, Co(tib)(1,2-phda)](n)center dot(H2O)(n) (1), Co-3(tib)(2)(1,3-phda)(3)(H2O)](n)center dot(H2O)(2n) (2), Co-5(tib)(3)(1,4-phda)(5)(H2O)(3)](n)center dot(H2O)(7n) (3), Zn-3(tib)(2)(1,3-phda)(3)](n)center dot(H2O)(4n) (4), and Mn(tib)(2)(H2O)(2)](n)center dot(1,4-phdaH)(2n)center dot(H2O)(4n) (5), obtained from the use of isomeric phenylenediacetates (phda) and the neutral 1,3,5-tris(1-imidazolyl)benzene (tib) ligand. Single crystal X-ray structures showed that 1 constitutes 3,5-connected 2-nodal nets with a double-layered two-dimensional (2D) structure, while 2 forms an interpenetrated 2D network (3,4-connected 3-nodal net). Complex 3 has a complicated three-dimensional structure with 10-nodal 3,4,5-connected nets. Complex 4, although it resembles 2 in stoichiometry and basic building structures, forms a very different overall 2D assembly. In complex 5 the dicarboxylic acid, upon losing only one of the acidic protons, does not take part in coordination; instead it forms a complicated hydrogen bonding network with water molecules. Magnetic susceptibility measurements over a wide range of temperatures revealed that the metal ions exchange very poorly through the tib ligand, but for the Co(II) complexes the effects of nonquenched orbital contributions are prominent. The 3d(10) metal complex 4 showed strong luminescence with lambda(max) = 415 nm (lambda(ex) = 360 nm).
Resumo:
Lead magnesium niobate-lead titanate (PMN-PT) is an intriguing candidate for applications in many electronic devices such as multi-layer capacitors, electro-mechanical transducers etc. because of its high dielectric constant, low dielectric loss and high strain near the Curie temperature. As an extension of our previous work on Ta-doped PMNT-PT aimed at optimizing the performance and reducing the cost, this paper focuses on the effect of Pb volatilization on the dielectric properties of 0.77Pb(Mg1/3(Nb0.9Ta0.1)2/3)O3-0.23PbTiO3. The dielectric constant and loss of the samples are measured at different frequencies and different temperatures. The phase purity of this compound is determined by X-ray diffraction pattern. It is found that the volatilization during sintering does influence the phase formation and dielectric properties. The best condition is sintering with 0.5 g extra PbO around a 4 g PMNT-PT sample.
Resumo:
The synthesis and direct observation of 1,1-di-tert-butyldiazene (16) at -127°C is described. The absorption spectrum of a red solution of 1,1-diazene 16 reveals a structured absorption band with λ max at 506 run (Me_2O, -125°C). The vibrational spacing in S_1 is about 1200 cm^(-1). The excited state of 16 emits weakly with a single maximum at 715 run observed in the fluorescence spectrum (Me_2O:CD_2Cl_2, -196°C). The proton NMR spectrum of 16 occurs as a singlet at 1.41 ppm. Monitoring this NMR absorption at -94^0 ± 2°C shows that 1,1-diazene 16 decomposes with a first-order rate of 1.8 x 10^(-3) sec(-1) to form isobutane, isobutylene and hexarnethylethane. This rate is 10^8 and 10^(34) times faster than the thermal decomposition of the corresponding cis and trans 1,2-di-tert-butyldiazene isomers. The free energy of activation for decomposition of 1,1-diazene 16 is found to be 12.5 ± 0.2 kcal/mol at -94°C which is much lower than the values of 19.1 and 19.4 kcal/lmole calculated at -94°C for N-(2,2,6,6- tetramethylpiperidyl)nitrene (3) and N-(2,2,5,5- tetrarnethylpyrrolidyl)nitrene (4), respectively. This difference between 16 and the cyclic-1,1-diazenes 3 and 4 can be attributed to a large steric interaction between the tert-butyl groups in 1,1-diazene 16.
In order to investigate the nature of the singlet-triplet gap in 1,1-diazenes, 2,5-di-tert-butyl-N-pyrrolynitrene (22) was generated but was found to be too reactive towards dimerization to be persistent. In the presence of dimethylsulfoxide, however, N-pyrrolynitrene (22) can be trapped as N-(2,5-di-tert-butyl- N'-pyrrolyl)dimethylsulfoxirnine (38). N-(2,5-di-tert-butyl-N'-pyrrolyl)dimethylsulfoximine (38-d^6) exchanges with free dimethylsulfoxide at 50°C in solution, presumably by generation and retrapping of pyrrolynitrene 22.