962 resultados para wireless security
Resumo:
The concept of a body-to-body network, where smart communicating devices carried or worn by a person are used to form a wireless network with devices situated on other nearby persons. New innovations in this area will see the form factor of smart devices being modified, so that they may be worn on the human body or integrated into clothing, in the process creating a new generation of smart people. Applications of body-to-body networking will extend well beyond the support of cellular and Wi-Fi networks. They will also be used in short-range covert military applications, first responder applications, team sports and used to interconnect body area networks (BAN). Security will be a major issue as routing between multiple nodes will increase the risk of unauthorized access and compromise sensitive data. This will add complexity to the medium access layer (MAC) and network management. Antennas designed to operate in body centric communications systems may be broadly categorized as on- or off-body radiators, according to their radiation pattern characteristics when mounted on the human body.
Resumo:
In this paper, we examine a novel approach to network security against passive eavesdroppers in a ray-tracing model and implement it on a hardware platform. By configuring antenna array beam patterns to transmit the data to specific regions, it is possible to create defined regions of coverage for targeted users. By adapting the antenna configuration according to the intended user’s channel state information, this allows the vulnerability of the physical regions to eavesdropping to be reduced. We present the application of our concept to 802.11n networks where an antenna array is employed at the access point. A range of antenna array configurations are examined by simulation and then realized using the Wireless Open-Access Research Platform(WARP)
Resumo:
We present a novel approach to network security against passive eavesdroppers by employing a configurable beam-forming technique to create tightly defined regions of coverage for targeted users. In contrast to conventional encryption methods, our security scheme is developed at the physical layer by configuring antenna array beam patterns to transmit the data to specific regions. It is shown that this technique can effectively reduce vulnerability of the physical regions to eavesdropping by adapting the antenna configuration according to the intended user's channel state information. In this paper we present the application of our concept to 802.11n networks where an antenna array is employed at the access point, and consider the issue of minimizing the coverage area of the region surrounding the targeted user. A metric termed the exposure region is formally defined and used to evaluate the level of security offered by this technique. A range of antenna array configurations are examined through analysis and simulation, and these are subsequently used to obtain the optimum array configuration for a user traversing a coverage area.
Resumo:
This paper presents a simple polarization encoding strategy that operates using only single element dual port transmit and receive antennas in such a way that selective spatial scrambling of QPSK data can be effected. The key transmitter and receiver relationships needed for this operation to occur are derived. The system is validated using a cross dipole antenna arrangement. Unlike all previously reported physical layer wireless solutions the approach developed in this paper transfers the security property to the receive side resulting in very simple transmit and receive side architectures thus avoiding the need for near field modulated array technology. In addition the scheme permits, for the first time, multiple spatially separated secured receive sites to operate in parallel.
Resumo:
This letter proposes several relay selection policies for secure communication in cognitive decode-and-forward (DF) relay networks, where a pair of cognitive relays are opportunistically selected for security protection against eavesdropping. The first relay transmits the secrecy information to the destination,
and the second relay, as a friendly jammer, transmits the jamming signal to confound the eavesdropper. We present new exact closed-form expressions for the secrecy outage probability. Our analysis and simulation results strongly support our conclusion that the proposed relay selection policies can enhance the performance of secure cognitive radio. We also confirm that the error floor phenomenon is created in the absence of jamming.
Resumo:
In this reported work, the frequency diverse array concept is employed to construct an orthogonal frequency-division multiplexing (OFDM) transmitter that has the capability of securing wireless communication in free space directly in the physical-layer without the need for mathematical encryption. The characteristics of the proposed scheme in terms of its secrecy performance are validated via bit error rate simulation under both high and low signal to noise ratio scenarios using the IEEE 802.11 OFDM physical-layer specification.
Resumo:
Interesting wireless networking scenarios exist wherein network services must be guaranteed in a dynamic fashion for some priority users. For example, in disaster recovery, members need to be able to quickly block other users in order to gain sole use of the radio channel. As it is not always feasible to physically switch off other users, we propose a new approach, termed selective packet destruction (SPD) to ensure service for priority users. A testbed for SPD has been created, based on the Rice University Wireless open-Access Research Platform and been used to examine the feasibility of our approach. Results from the testbed are presented to demonstrate the feasibility of SPD and show how a balance between performance and acknowledgement destruction rate can be achieved. A 90% reduction in TCP & UDP traffic is achieved for a 75% MAC ACK destruction rate.
Resumo:
We present two physical layer secure transmission schemes for multi-user multi-relay networks, where the communication from M users to the base station is assisted by direct links and by N decode-and-forward relays. In this network, we consider that a passive eavesdropper exists to overhear the transmitted information, which entails exploiting the advantages of both direct and relay links for physical layer security enhancement. To fulfill this requirement, we investigate two criteria for user and relay selection and examine the achievable secrecy performance. Criterion I performs a joint user and relay selection, while Criterion II performs separate user and relay selections, with a lower implementation complexity. We derive a tight lower bound on the secrecy outage probability for Criterion I and an accurate analytical expression for the secrecy outage probability for Criterion II. We further derive the asymptotic secrecy outage probabilities at high transmit signal-to-noise ratios and high main-to-eavesdropper ratios for both criteria. We demonstrate that the secrecy diversity order is min (MN, M + N) for Criterion I, and N for Criterion II. Finally, we present numerical and simulation results to validate the proposed analysis, and show the occurrence condition of the secrecy outage probability floor
Resumo:
Key generation from the randomness of wireless channels is a promising alternative to public key cryptography for the establishment of cryptographic keys between any two users. This paper reviews the current techniques for wireless key generation. The principles, performance metrics and key generation procedure are comprehensively surveyed. Methods for optimizing the performance of key generation are also discussed. Key generation applications in various environments are then introduced along with the challenges of applying the approach in each scenario. The paper concludes with some suggestions for future studies.
Resumo:
Key generation from wireless channels is a promising alternative to public key cryptography for the establishment of cryptographic keys. It is the first paper to experimentally study the channel reciprocity principle of key generation, through investigating and quantifying channel measurements' cross-correlation relationship affected by noise and non-simultaneous measurements. Channel measurements, both received signal strength and channel state information, are collected from a real experimental platform using the wireless open access research platform (WARP) in a multipath office room. We found that in a slow fading channel (e.g., with a coherence time of about 50~ms), the channel cross-correlation is impacted greatly by noise but little by non-simultaneous measurements with a small sampling time difference (e.g., 0.06 ms). The resolution of the sampling time difference can be satisfied by wireless systems such as IEEE 802.11 to maintain an acceptable cross-correlation coefficient without affecting the bandwidth and communication efficiency.
Resumo:
In the modern society, new devices, applications and technologies, with sophisticated capabilities, are converging in the same network infrastructure. Users are also increasingly demanding in personal preferences and expectations, desiring Internet connectivity anytime and everywhere. These aspects have triggered many research efforts, since the current Internet is reaching a breaking point trying to provide enough flexibility for users and profits for operators, while dealing with the complex requirements raised by the recent evolution. Fully aligned with the future Internet research, many solutions have been proposed to enhance the current Internet-based architectures and protocols, in order to become context-aware, that is, to be dynamically adapted to the change of the information characterizing any network entity. In this sense, the presented Thesis proposes a new architecture that allows to create several networks with different characteristics according to their context, on the top of a single Wireless Mesh Network (WMN), which infrastructure and protocols are very flexible and self-adaptable. More specifically, this Thesis models the context of users, which can span from their security, cost and mobility preferences, devices’ capabilities or services’ quality requirements, in order to turn a WMN into a set of logical networks. Each logical network is configured to meet a set of user context needs (for instance, support of high mobility and low security). To implement this user-centric architecture, this Thesis uses the network virtualization, which has often been advocated as a mean to deploy independent network architectures and services towards the future Internet, while allowing a dynamic resource management. This way, network virtualization can allow a flexible and programmable configuration of a WMN, in order to be shared by multiple logical networks (or virtual networks - VNs). Moreover, the high level of isolation introduced by network virtualization can be used to differentiate the protocols and mechanisms of each context-aware VN. This architecture raises several challenges to control and manage the VNs on-demand, in response to user and WMN dynamics. In this context, we target the mechanisms to: (i) discover and select the VN to assign to an user; (ii) create, adapt and remove the VN topologies and routes. We also explore how the rate of variation of the user context requirements can be considered to improve the performance and reduce the complexity of the VN control and management. Finally, due to the scalability limitations of centralized control solutions, we propose a mechanism to distribute the control functionalities along the architectural entities, which can cooperate to control and manage the VNs in a distributed way.
Resumo:
Future emerging market trends head towards positioning based services placing a new perspective on the way we obtain and exploit positioning information. On one hand, innovations in information technology and wireless communication systems enabled the development of numerous location based applications such as vehicle navigation and tracking, sensor networks applications, home automation, asset management, security and context aware location services. On the other hand, wireless networks themselves may bene t from localization information to improve the performances of di erent network layers. Location based routing, synchronization, interference cancellation are prime examples of applications where location information can be useful. Typical positioning solutions rely on measurements and exploitation of distance dependent signal metrics, such as the received signal strength, time of arrival or angle of arrival. They are cheaper and easier to implement than the dedicated positioning systems based on ngerprinting, but at the cost of accuracy. Therefore intelligent localization algorithms and signal processing techniques have to be applied to mitigate the lack of accuracy in distance estimates. Cooperation between nodes is used in cases where conventional positioning techniques do not perform well due to lack of existing infrastructure, or obstructed indoor environment. The objective is to concentrate on hybrid architecture where some nodes have points of attachment to an infrastructure, and simultaneously are interconnected via short-range ad hoc links. The availability of more capable handsets enables more innovative scenarios that take advantage of multiple radio access networks as well as peer-to-peer links for positioning. Link selection is used to optimize the tradeo between the power consumption of participating nodes and the quality of target localization. The Geometric Dilution of Precision and the Cramer-Rao Lower Bound can be used as criteria for choosing the appropriate set of anchor nodes and corresponding measurements before attempting location estimation itself. This work analyzes the existing solutions for node selection in order to improve localization performance, and proposes a novel method based on utility functions. The proposed method is then extended to mobile and heterogeneous environments. Simulations have been carried out, as well as evaluation with real measurement data. In addition, some speci c cases have been considered, such as localization in ill-conditioned scenarios and the use of negative information. The proposed approaches have shown to enhance estimation accuracy, whilst signi cantly reducing complexity, power consumption and signalling overhead.
Resumo:
The iterative nature of turbo-decoding algorithms increases their complexity compare to conventional FEC decoding algorithms. Two iterative decoding algorithms, Soft-Output-Viterbi Algorithm (SOVA) and Maximum A posteriori Probability (MAP) Algorithm require complex decoding operations over several iteration cycles. So, for real-time implementation of turbo codes, reducing the decoder complexity while preserving bit-error-rate (BER) performance is an important design consideration. In this chapter, a modification to the Max-Log-MAP algorithm is presented. This modification is to scale the extrinsic information exchange between the constituent decoders. The remainder of this chapter is organized as follows: An overview of the turbo encoding and decoding processes, the MAP algorithm and its simplified versions the Log-MAP and Max-Log-MAP algorithms are presented in section 1. The extrinsic information scaling is introduced, simulation results are presented, and the performance of different methods to choose the best scaling factor is discussed in Section 2. Section 3 discusses trends and applications of turbo coding from the perspective of wireless applications.