Exploiting Direct Links for Physical Layer Security in Multi-User Multi-Relay Networks


Autoria(s): Fan, Lisheng; Yang, Nan; Duong, Trung Q.; Elkashlan, Maged; Karagiannidis, George K.
Data(s)

15/02/2016

Resumo

We present two physical layer secure transmission schemes for multi-user multi-relay networks, where the communication from M users to the base station is assisted by direct links and by N decode-and-forward relays. In this network, we consider that a passive eavesdropper exists to overhear the transmitted information, which entails exploiting the advantages of both direct and relay links for physical layer security enhancement. To fulfill this requirement, we investigate two criteria for user and relay selection and examine the achievable secrecy performance. Criterion I performs a joint user and relay selection, while Criterion II performs separate user and relay selections, with a lower implementation complexity. We derive a tight lower bound on the secrecy outage probability for Criterion I and an accurate analytical expression for the secrecy outage probability for Criterion II. We further derive the asymptotic secrecy outage probabilities at high transmit signal-to-noise ratios and high main-to-eavesdropper ratios for both criteria. We demonstrate that the secrecy diversity order is min (MN, M + N) for Criterion I, and N for Criterion II. Finally, we present numerical and simulation results to validate the proposed analysis, and show the occurrence condition of the secrecy outage probability floor

Formato

application/pdf

Identificador

http://pure.qub.ac.uk/portal/en/publications/exploiting-direct-links-for-physical-layer-security-in-multiuser-multirelay-networks(8f706ea0-52cc-4a13-b7fa-7ecf189216b4).html

http://dx.doi.org/10.1109/TWC.2016.2530068

http://pure.qub.ac.uk/ws/files/18273946/Paper_TW_Apr_15_0525.pdf

Idioma(s)

eng

Direitos

info:eu-repo/semantics/openAccess

Fonte

Fan , L , Yang , N , Duong , T Q , Elkashlan , M & Karagiannidis , G K 2016 , ' Exploiting Direct Links for Physical Layer Security in Multi-User Multi-Relay Networks ' IEEE Transactions on Wireless Communications . DOI: 10.1109/TWC.2016.2530068

Tipo

article