932 resultados para two-dimensional photonic crystals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examine the solution of the two-dimensional Cahn-Hilliard-reaction (CHR) equation in the xy plane as a model of Li+ intercalation into LiFePO4 material. We validate our numerical solution against the solution of the depth-averaged equation, which has been used to model intercalation in the limit of highly orthotropic diffusivity and gradient penalty tensors. We then examine the phase-change behaviour in the full CHR system as these parameters become more isotropic, and find that as the Li+ diffusivity is increased in the x direction, phase separation persists at high currents, even in small crystals with averaged coherency strain included. The resulting voltage curves decrease monotonically, which has previously been considered a hallmark of crystals that fill homogeneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of the ammonium salts of phenoxyacetic acid, NH4+ C8H6O3- (I), (4-fluorophenoxy)acetic acid NH4+ C8H5FO3- (II) and the herbicidally active (4-chloro-2-methylphenoxy)acetic acid (MCPA), NH4+ C9H8ClO3-. 0.5(H2O) (III) have been determined. All have two-dimensional layered structures based on inter-species ammonium N-H...O hydrogen-bonding associations which give core substructures consisting primarily of conjoined cyclic motifs. Crystals of (I) and (II) are isomorphous with the core comprising R2/1(5), R2/1(4) and centrosymmetric R2/4(8) ring motifs, giving two-dimensional layers lying parallel to (100). In (III), the water molecule of solvation lies on a crystallographic twofold rotation axis and bridges two carboxyl O-atoms in an R4/4(12) hydrogen-bonded motif, creating two R3/4(10) rings which together with a conjoined centrosymmetric R2/4(8) ring incorporating both ammonium cations, generate two-dimensional layers lying parallel to (100). No pi-pi ring associations are present in any of the structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic susceptibility studies on single crystals of nearly stoichiometric La2NiO4 with the applied field both parallel and perpendicular to the c axis show a transition at 204 K below which two-dimensional canted antiferromagnetic order seems to exist. This oxide also undergoes a transition from isotropic to anisotropic susceptibility near 100 and 250 K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the optical transmission properties of a combined system which consists of two quantum-dot-nanocavity subsystems indirectly coupled to a waveguide in a planar photonic crystal. A Mollow-like triplet and the growth of sidebands are found, reflecting intrinsic optical responses in the complex microstructure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new broadband filter, based on the high level bandgap in 1-D photonic crystals (PCs) of the form Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si vertical bar air vertical bar Si is designed by the plane wave expansion method (PWEM) and the transfer matrix method (TMM) and fabricated by lithography. The optical response of this filter to normal-incident and oblique-incident light proves that utilizing the high-level bandgaps of PCs is an efficient method to lower the difficulties of fabricating PCs, increase the etching depth of semiconductor materials, and reduce the coupling loss at the interface between optical fibers and the PC device. (c) 2007 Society of Photo-Optical Instrumentation Engineers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antibunching properties of the fluorescence from a two-level ideal system in a 12-fold quasiperiodic photonic crystal are investigated based on the calculated local density of states. We found that the antibunching phenomenon of the fluorescence from two-level ideal systems could be significantly changed by varying their positions, i.e., perfect antibunching and antibunching with damped Rabi oscillation phenomenon occurred in different positions and at different frequencies in photonic crystals as a result of the large differences in the local density of states. This study revealed that the multi-level coherence of fluorescence from a two-level ideal system could be manipulated by controlling the position of the two-level ideal system in photonic crystals and the emission frequency in the photonic band structure. Copyright (C) EPLA, 2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated analytically the band structure of photonic crystals (PCs) with alternate layers of left and right-handed materials in one-dimension. It was found that, under certain conditions, new peculiar band structures not seen in all right-handed material PCs appeared. We transformed the analytic dispersion relation into two cosine terms, and obtained an interesting band structure using the new form of dispersion equation. Conditions for obtaining such peculiar band structure were given. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-to-two splitter for self-collimated beams in photonic crystal (PC) is designed by inserting one row of line defects. Finite-difference time-domain (FDTD) method is used to simulate the light propagation process. Our systematical studies show that the splitting ratio is a function of the airholes size of the line defect radius, and stays fairly constant as a function of frequency. Furthermore, it is shown the numerical results can be analyzed by coupled-mode theory. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we demonstrate the self-assembly of ionic liquids (ILs)-stabilized Pt nanoparticles into two-dimensional (2D) patterned nanostructures at the air-water interface under ambient conditions. Here, ILs are not used as solvents but as mediators by virtue of their pronounced self-organization ability in synthesis of self-assembled, highly organized hybrid Pt nanostructures. It is also found that the morphologies of the 2D patterned nanostructures are directly connected with the quantities of ILs. Due to the special structures of ILs-stabilized Pt nanoparticles, 2D patterned Pt nanostructures can be formed through the pi-pi stack interactions and hydrogen bonds. The resulting 2D patterned Pt nanostructures exhibit good electrocatalytic activity toward oxygen reduction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An organic-inorganic hybrid molybdenum phosphate, Na-2[{Mn(phen)(2)(H2O)} {Mn(phen)(2)}(3){(MnMo12O24)-O-v (HPO4)(6)(PO4)(2) (OH)(6)}] . 4H(2)O (phen=1,10-phenanthroline), involving molybdenum present in V oxidation state and covalently bonded transition metal coordination complexes, has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Deep brown-red crystals are formed in the triclinic system, space group P (1) over bar, a=16.581(l)Angstrom, b=18.354(1)Angstrom, c=24.485(2)Angstrom, alpha=80.589(l)degrees, beta=71.279(1)degrees, gamma=67.084(1)degrees, V=6493.8(8)Angstrom(3), Z=2, lambda(MoKalpha)=0.71073Angstrom (R(F)=0.0686 for 29,053 reflections). Data were collected on a Bruker Smart Apex CCD diffractometer at 293 K in the range of 1.76 < theta < 28.06degrees using omega-2theta scans technique. The structure of the title compound may be considered to be based on {Mo6O12(HPO4)(3)(PO4)(OH)(3)} units bonded together with {Mn(phen)(2)} subunits into a two-dimensional network. Two types of tunnels are observed in the solid of the title compound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The branched crystal morphology of linear polyethylene formed at various temperatures from thin films has been studied by atomic-force microscopy (AFM), transmission electron microscopy (TEM), electron diffraction (ED) pattern and polymer decoration technique. Two types of branched patterns, i.e. dendrite and seaweed patterns, have been visualized. The fractal dimension d(f) = 1.65 of both dendrite and some of seaweed patterns was obtained by using the box-counting method, although most of the seaweed patterns are compact. Selected-area ED patterns indicate that the fold stems tilt about 34.5degrees around the b-axis and polymer decoration patterns show that the chain folding direction and regularity in two (200). regions are quite different from each other. Because of chain tilting, branched crystals show three striking features: 1) the lamella-like branches show two (200) regions with different thickness; 2) the crystals usually bend towards the thin region; 3) the thick region grows faster by developing branches, thus branches usually occur outside the thick region. The branched patterns show a characteristic width w, which gives a linear relationship with the crystallization temperature on a semilogarithmic plot.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bottom-up colloidal synthesis of photonic crystals has attracted interest over top-down approaches due to their relatively simplicity, the potential to produce large areas, and the low-costs with this approach in fabricating complex 3-dimensional structures. This thesis focuses on the bottom-up approach in the fabrication of polymeric colloidal photonic crystals and their subsequent modification. Poly(methyl methacrylate) sub-micron spheres were used to produce opals, inverse opals and 3D metallodielectric photonic crystal (MDPC) structures. The fabrication of MDPCs with Au nanoparticles attached to the PMMA spheres core–shell particles is described. Various alternative procedures for the fabrication of photonic crystals and MDPCs are described and preliminary results on the use of an Au-based MDPC for surface-enhanced Raman scattering (SERS) are presented. These preliminary results suggest a threefold increase of the Raman signal with the MDPC as compared to PMMA photonic crystals. The fabrication of PMMA-gold and PMMA-nickel MDPC structures via an optimised electrodeposition process is described. This process results in the formation of a continuous dielectric-metal interface throughout a 3D inverted photonic crystal structure, which are shown to possess interesting optical properties. The fabrication of a robust 3D silica inverted structure with embedded Au nanoparticles is described by a novel co-crystallisation method which is capable of creating a SiO2/Au NP composite structure in a single step process. Although this work focuses on the creation of photonic crystals, this co-crystallisation approach has potential for the creation of other functional materials. A method for the fabrication of inverted opals containing silicon nanoparticles using aerosol assisted chemical vapour deposition is described. Silicon is a high dielectric material and nanoparticles of silicon can improve the band gap and absorption properties of the resulting structure, and therefore have the potential to be exploited in photovoltaics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photonic crystals (PhCs) influence the propagation of light by their periodic variation in dielectric contrast or refractive index. This review outlines the attractive optical qualities inherent to most PhCs namely the presence of full or partial photonic band gaps and the possibilities they present towards the inhibition of spontaneous emission and the localization of light. Colloidal self-assembly of polymer or silica spheres is one of the most favoured and low cost methods for the formation of PhCs as artificial opals. The state of the art in growth methods currently used for colloidal self-assembly are discussed and the use of these structures for the formation of inverse opal architectures is then presented. Inverse opal structures with their porous and interconnected architecture span several technological arenas - optics and optoelectronics, energy storage, communications, sensor and biological applications. This review presents several of these applications and an accessible overview of the physics of photonic crystal optics that may be useful for opal and inverse opal researchers in general, with a particular emphasis on the recent use of these three-dimensional porous structures in electrochemical energy storage technology. Progress towards all-optical integrated circuits may lie with the concepts of the photonic crystal, but the unique optical and structural properties of these materials and the convergence of PhC and energy storage disciplines may facilitate further developments and non-destructive optical analysis capabilities for (electro)chemical processes that occur within a wide variety of materials in energy storage research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional photonic crystals based on macroporous silicon are fabricated by photoelectrochemical etching and subsequent focused-ion-beam drilling. Reflection measurements show a high reflection in the range of the stopgap and indicate the spectral position of the complete photonic band gap. The onset of diffraction which might influence the measurement is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of mixing and scattering of two non-collinear Gaussian pulses with different centre frequencies and lengths, incident on the finite nonlinear periodic layered dielectric structures, have been analysed. It is shown that at the backward emission grows with the number of layers and can reach the level of the forward emission in the direction of combinatorial frequency scattering.