986 resultados para transgenic pineapple plants


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Programmed cell death-associated genes, especially antiapoptosis-related genes have been reported to confer tolerance to a wide range of biotic and abiotic stresses in dicotyledonous plants such as tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.). This is the first time the antiapoptotic gene SfIAP was transformed into a monocotyledonous representative: rice (Oryza sativa L.). Transgenic rice strains expressing SfIAP were generated by the Agrobacterium-mediated transformation method and rice embryogenic calli, and assessed for their ability to confer tolerance to salt stress at both the seedling and reproductive stages using a combination of molecular, agronomical, physiological and biochemical techniques. The results show that plants expressing SfIAP have higher salt tolerance levels in comparison to the wild-type and vector controls. By preventing cell death at the onset of salt stress and maintaining the cell membrane’s integrity, SfIAP transgenic rice plants can retain plant water status, ion homeostasis, photosynthetic efficiency and growth to combat salinity successfully.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The tomato I-3 and I-7 genes confer resistance to Fusarium oxysporum f. sp. lycopersici (Fol) race 3 and were introgressed into the cultivated tomato, Solanum lycopersicum, from the wild relative Solanum pennellii. I-3 has been identified previously on chromosome 7 and encodes an S-receptor-like kinase, but little is known about I-7. Molecular markers have been developed for the marker-assisted breeding of I-3, but none are available for I-7. We used an RNA-seq and single nucleotide polymorphism (SNP) analysis approach to map I-7 to a small introgression of S. pennellii DNA (c. 210 kb) on chromosome 8, and identified I-7 as a gene encoding a leucine-rich repeat receptor-like protein (LRR-RLP), thereby expanding the repertoire of resistance protein classes conferring resistance to Fol. Using an eds1 mutant of tomato, we showed that I-7, like many other LRR-RLPs conferring pathogen resistance in tomato, is EDS1 (Enhanced Disease Susceptibility 1) dependent. Using transgenic tomato plants carrying only the I-7 gene for Fol resistance, we found that I-7 also confers resistance to Fol races 1 and 2. Given that Fol race 1 carries Avr1, resistance to Fol race 1 indicates that I-7-mediated resistance, unlike I-2- or I-3-mediated resistance, is not suppressed by Avr1. This suggests that Avr1 is not a general suppressor of Fol resistance in tomato, leading us to hypothesize that Avr1 may be acting against an EDS1-independent pathway for resistance activation. The identification of I-7 has allowed us to develop molecular markers for marker-assisted breeding of both genes currently known to confer Fol race 3 resistance (I-3 and I-7). Given that I-7-mediated resistance is not suppressed by Avr1, I-7 may be a useful addition to I-3 in the tomato breeder's toolbox.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vigna Delta(1)-pyrroline-5-carboxylate synthetase (P5CS) cDNA was transferred to chickpea (Cicer arietinum L.) cultivar Annigeri via Agrobacterium tumefaciens mediated transformation. Following selection on hygromycin and regeneration, 60 hygromycin-resistant plants were recovered. Southern blot analysis of five fertile independent lines of T0 and T1 generation revealed single and multiple insertions of the transgene. RT-PCR and Western blot analysis of T0 and T1 progeny demonstrated that the P5CS gene is expressed and produced functional protein in chickpea. T1 transgenic lines accumulated higher amount of proline under 250 mM NaCl compared to untransformed controls. Higher accumulation of Na(+) was noticed in the older leaves but negligible accumulation in seeds of T1 transgenic lines as compared to the controls. Chlorophyll stability and electrolyte leakage indicated that proline overproduction helps in alleviating salt stress in transgenic chickpea plants. The T1 transgenics lines were grown to maturity and set normal viable seeds under continuous salinity stress (250 mM) without any reduction in plant yield in terms of seed mass.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP). In chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally lacking pPGI activity as a consequence of aberrant intron splicing of the pPGI encoding gene, PGI1. Starch content in pgi1-3 source leaves was ca. 10-15% of that of wild type (WT) leaves, which was similar to that of leaves of pgi1-2, a T-DNA insertion pPGI null mutant. Starch deficiency of pgi1 leaves could be reverted by the introduction of a sex1 null mutation impeding beta-amylolytic starch breakdown. Although previous studies showed that starch granules of pgi1-2 leaves are restricted to both bundle sheath cells adjacent to the mesophyll and stomata guard cells, microscopy analyses carried out in this work revealed the presence of starch granules in the chloroplasts of pgi1-2 and pgi1-3 mesophyll cells. RT-PCR analyses showed high expression levels of plastidic and extra-plastidic beta-amylase encoding genes in pgi1 leaves, which was accompanied by increased beta-amylase activity. Both pgi1-2 and pgi1-3 mutants displayed slow growth and reduced photosynthetic capacity phenotypes even under continuous light conditions. Metabolic analyses revealed that the adenylate energy charge and the NAD(P) H/NAD(P) ratios in pgi1 leaves were lower than those of WT leaves. These analyses also revealed that the content of plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP)-pathway derived cytokinins (CKs) in pgi1 leaves were exceedingly lower than in WT leaves. Noteworthy, exogenous application of CKs largely reverted the low starch content phenotype of pgi1 leaves. The overall data show that pPGI is an important determinant of photosynthesis, energy status, growth and starch accumulation in mesophyll cells likely as a consequence of its involvement in the production of OPPP/glycolysis intermediates necessary for the synthesis of plastidic MEP-pathway derived hormones such as CKs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

利用聚合酶链式反应(PCR)技术从Alcaligenes eutrophus H16染色体DNA中扩增并克隆了调控聚-3-羟基丁酸(poly-3-hydroxy-butyrate,PHB)生物合成的两个关键酶基因:依赖NADPH的乙酰乙酰CoA还原酶基因(phbB)和PHB合成酶基因(phbC)。限制性内切酶图谱和核苷酸序列分析证实了克隆结果,并表明克隆的基因与国外所报道的有很高的同源性。经过基因拼接,构建了块茎特异性表达的高等植物表达载体pPSAGB(嵌合phbB)、pBIBGC(嵌合phbC)和pPSAGCB(嵌合phbB和phbC)。并以试管薯(microtuber)为外植体经Agrobacterium介导转化了虎头、京丰、Bintje、Favorita、高原4号和88-5共6个马铃薯品种,获得49个株系。经PCR检测导入phbB的株系共有44个,对其中30个株系进行DNA dot blot分析,结果表明phbC导入呈阳性的株系有20个。深入的鉴定工作还在进行中。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

水稻、玉米、小麦和大麦等许多主要禾本科作物的第一限制性氨基酸是赖氨酸。本文将一个来源于四棱豆的高赖氨酸蛋白基因导入水稻,以研究通过转基因改善蛋白质的可能,获得有经济价值和社会意义的转基因作物。 构建了含有高赖氨酸蛋白基因(Lys)、gus基因及植物选择标记潮霉素磷酸转移酶基因(hpt)的植物表达载体pBRLys;在pBRLys中,该高赖氨酸蛋白基因由目前已知最强的单子叶植物启动子玉米Ubiquitin 1启动子调控。用基因枪轰击法将pBRLys导入水稻幼胚或幼胚诱导的愈伤组织。共得到36株潮霉素抗性再生植株,经分子检测有22株为转基因植株。 实验中对影响水稻转化、再生和移栽一些条件进行了研究。从潮霉素筛选浓度、愈伤组织干燥处理、光照对分化的影响、多效唑的影响和移栽环境等做了一些简化和改善。 PCR检测、PCR-Southern杂交和Southern杂交表明潮霉素基因和Lys基因已经整合到转基因水稻的基因组中,外源基因在转基因水稻基因组中以1个拷贝以上的形式存在。同时,GUS组织化学染色表明转基因水稻植株的叶、茎和根中都有gus基因的表达。 初步对5株转基因植株进行赖氨酸含量测定,结果表明:与非转化对照相比,有两棵植株赖氨酸含量提高,分别增加6.0%和12.4%。对更多抗性转化植株的分子检测、GUS分析和赖氨酸含量测定正在进行之中。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is proposed that post-harvest longevity and appearance of salad crops is closely linked to pre-harvest leaf morphology (cell and leaf size) and biophysical structure (leaf strength). Transgenic lettuce plants (Lactuca sativa cv. Valeria) were produced in which the production of the cell wall-modifying enzyme xyloglucan endotransglucosylase/hydrolase (XTH) was down-regulated by antisense inhibition. Independently transformed lines were shown to have multiple members of the LsXTH gene family down-regulated in mature leaves of 6-week-old plants and during the course of shelf life. Consequently, xyloglucan endotransglucosylase (XET) enzyme activity and action were down-regulated in the cell walls of these leaves and it was established that leaf area and fresh weight were decreased while leaf strength was increased in the transgenic lines. Membrane permeability was reduced towards the end of shelf life in the transgenic lines relative to the controls and bacteria were evident inside the leaves of control plants only. Most importantly, an extended shelf-life of transgenic lines was observed relative to the non-transgenic control plants. These data illustrate the potential for engineering cell wall traits for improving quality and longevity of salad crops using either genetic modification directly, or by using markers associated with XTH genes to inform a commercial breeding programme.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Flowering is controlled by several environmental and endogenous factors, usually associated with a complex network of metabolic mechanisms. The gene characterization in Arabidopsis model has provided much information about the genetic and molecular mechanisms that control flowering process. Some of these genes had been found in rice and maize. However, in sugarcane this processe is not well known. It is known that early flowering may reduce its production up to 60% at northeast conditions. Considering the impact of early flowering in sugarcane production, the aim of this work was to make the gene characterization of two cDNAs previously identified in subtractive cDNA libraries: scPKCI and scSHAGGY. The in silico analysis showed that these two cDNAs presented both their sequence and functional catalytic domains conserved. The results of transgenic plants containing the overexpression of the gene cassette scPKCI in sense orientation showed that this construction had a negative influence on the plant development as it was observed a decrease in plant height and leaf size. For the scPKCI overexpression in antisense orientation it was observed change in the number of branches from T1 transgenic plants, whereas transgenic T2 plants showed slow development during germination and initial stages of development. The other cDNA analyzed had homology to SHAGGY protein. The overexpression construct in sense orientation did not shown any effect on development. The only difference observed it was an increase in stigma structure. These results allowed us to propose a model how these two genes may be interact and affect floweringdevelopment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O abacaxizeiro é uma planta de grande importância econômica, porém seu florescimento natural causa sérios problemas, tornando seu manejo difícil devido à desuniformidade de frutos e colheitas, elevando o custo de produção. O objetivo deste trabalho foi manipular o florescimento do abacaxizeiro, contribuindo para uma produção uniforme colocada no mercado, nos meses de menor oferta. Utilizou-se o Paclobutrazol (PBZ) nas concentrações de 100; 150 e 200 mg L-1, em 2; 3 ou 4 aplicações via foliar, em plantas de abacaxi cv. Smooth Cayenne, no município de Presidente Alves-SP. O delineamento empregado foi em blocos ao acaso, com 10 tratamentos e três repetições, com 40 plantas por parcela experimental. No período de 100 a 150 dias após a primeira aplicação dos tratamentos, efetuaram-se as contagens de inflorescências presentes no centro da roseta foliar das plantas. Todos os tratamentos com Paclobutrazol inibiram a diferenciação floral natural do abacaxizeiro, recomendando-se a concentração de 150 mg L-1 em duas aplicações, com início em abril, a intervalo de 15 dias.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objectives of this work were to characterize pineapple plants (Ananas comosus L. Merril) cv. Smooth Cayenne, cultured in vitro, in saline medium, in relation to bromelian activity, identifying the parts of the plant with the highest bromelian activity. Also under aim was the study of the influence of saline stress on the enzyme activity. Axillary buds of pineapple were cultivated in vitro in MS medium, supplemented with 2 mg.L-1 BAP and 1 mg.L-1 NAA. The levels of salinity tested were: 0.57 g.L-1 NaCl, 1.15 g.L-1 NaCl, and 2.30 g.L-1 NaCl. Bromelian activity was evaluated in the development of buds, shoots, and roots. The results showed that bromelian activity was higher in buds at the highest salt concentration at 15 days. Cultured shoots showed bromelian activity decreasing in the saline treatments in all the collection, up to 60 days in culture. The roots showed higher bromelian activity in the roots in saline medium.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The control of cotton pests may be accomplished using Bacillus thuringiensis Cry proteins. For this purpose, the objective of this work was to evaluate the insecticidal activity of a new Cry1Ia protein against neonatal larvae of Spodoptera frugiperda and Anthonomus grandis. The complete cry1Ia gene, previously obtained by PCR with oligonucleotide primers based on the sequenced gene, was cloned into the vector pET28a(+), introduced into Escherichia coli BL21(DE3) and expressed by induction with IPTG. The expression of the Cry1Ia protein was confirmed with molecular weight of approximately 81 kDa. The results demonstrated the efficiency of the bacterial system for the expression of B. thuringiensis Cry1Ia protein, which was subsequently used in quantitative bioassays against S. frugiperda and A. grandis larvae, resulting in an extremely toxic protein for both species. This characteristic is exceptionally important for obtaining transgenic cotton plants resistant to these pests.