995 resultados para transfer RNA
Resumo:
Funding: This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 613960 (SMARTBEES) (http://www.smartbees-fp7.eu/) and Veterinary Medicines Directorate, Department for Environment Food & Rural Affairs (Project # VM0517) (https://www.gov.uk/government/organisations/veterinary-medicines-directorate). CHM was supported by a Biosciences Knowledge Transfer Network Biotechnology and Biological Sciences Research Council (KTN-BBSRC CASE) Studentship (BB/L502467/1) (http://www.bbsrc.ac.uk/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We gratefully acknowledge Mr Sebastian Bacz’s expert help and advice with beekeeping.
Resumo:
HIV-1 reverse transcriptase (RT) catalyzes the synthesis of DNA from DNA or RNA templates. During this process, it must transfer its primer from one template to another RNA or DNA template. Binary complexes made of RT and a primer/template bind an additional single-stranded RNA molecule of the same nucleotide sequence as that of the DNA or RNA template. The additional RNA strand leads to a 10-fold decrease of the off-rate constant, koff, of RT from a primer/DNA template. In a binary complex of RT and a primer/template, the primer can be cross-linked to both the p66 and p51 subunits. Depending on the location of the photoreactive group in the primer, the distribution of the cross-linked primers between subunits is dependent on the nature of the template and of the additional single-stranded molecule. Greater cross-linking of the primer to p51 occurs with DNA templates, whereas cross-linking to p66 predominates with RNA templates. Excess single-stranded DNA shifts the distribution of cross-linking from p66 to p51 with RNA templates, and excess single-stranded RNA shifts the cross-linking from p51 to p66 with DNA templates. RT thus uses two primer/template binding modes depending on the nature of the template.
Resumo:
Analysis of the antitumor immune response after gene transfer of a foreign major histocompatibility complex class I protein, HLA-B7, was performed. Ten HLA-B7-negative patients with stage IV melanoma were treated in an effort to stimulate local tumor immunity. Plasmid DNA was detected within treated tumor nodules, and RNA encoding recombinant HLA-B7 or HLA-B7 protein was demonstrated in 9 of 10 patients. T cell migration into treated lesions was observed and tumor-infiltrating lymphocyte reactivity was enhanced in six of seven and two of two patients analyzed, respectively. In contrast, the frequency of cytotoxic T lymphocyte against autologous tumor in circulating peripheral blood lymphocytes was not altered significantly, suggesting that peripheral blood lymphocyte reactivity is not indicative of local tumor responsiveness. Local inhibition of tumor growth was detected after gene transfer in two patients, one of whom showed a partial remission. This patient subsequently received treatment with tumor-infiltrating lymphocytes derived from gene-modified tumor, with a complete regression of residual disease. Thus, gene transfer with DNA–liposome complexes encoding an allogeneic major histocompatibility complex protein stimulated local antitumor immune responses that facilitated the generation of effector cells for immunotherapy of cancer.
Resumo:
Ribozymes of hepatitis delta virus have been proposed to use an active-site cytosine as an acid-base catalyst in the self-cleavage reaction. In this study, we have examined the role of cytosine in more detail with the antigenomic ribozyme. Evidence that proton transfer in the rate-determining step involved cytosine 76 (C76) was obtained from examining cleavage activity of the wild-type and imidazole buffer-rescued C76-deleted (C76Δ) ribozymes in D2O and H2O. In both reactions, a similar kinetic isotope effect and shift in the apparent pKa indicate that the buffer is functionally substituting for the side chain in proton transfer. Proton inventory of the wild-type reaction supported a mechanism of a single proton transfer at the transition state. This proton transfer step was further characterized by exogenous base rescue of a C76Δ mutant with cytosine and imidazole analogues. For the imidazole analogues that rescued activity, the apparent pKa of the rescue reaction, measured under kcat/KM conditions, correlated with the pKa of the base. From these data a Brønsted coefficient (β) of 0.51 was determined for the base-rescued reaction of C76Δ. This value is consistent with that expected for proton transfer in the transition state. Together, these data provide strong support for a mechanism where an RNA side chain participates directly in general acid or general base catalysis of the wild-type ribozyme to facilitate RNA cleavage.
Resumo:
Ribozymes are polynucleotide molecules with intrinsic catalytic activity, capable of cleaving nucleic acid substrates. Large RNA molecules were synthesized containing a hammerhead ribozyme moiety of 52 nucleotides linked to an inactive leader sequence, for total lengths of either 262 or 1226 nucleotides. Frozen RNAs were irradiated with high energy electrons. Surviving ribozyme activity was determined using the ability of the irradiated ribozymes to cleave a labeled substrate. The amount of intact RNA remaining was determined from the same irradiated samples by scanning the RNA band following denaturing gel electrophoresis. Radiation target analyses of these data revealed a structural target size of 80 kDa and a ribozyme activity target size of 15 kDa for the smaller ribozyme, and 319 kDa and 16 kDa, respectively, for the larger ribozyme. The disparity in target size for activity versus structure indicates that, in contrast to proteins, there is no spread of radiation damage far from the primary site of ionization in RNA molecules. The smaller target size for activity indicates that only primary ionizations occurring in the specific active region are effective. This is similar to the case for oligosaccharides. We concluded that the presence of the ribose sugar in the polymer chain restricts radiation damage to a small region and prevents major energy transfer throughout the molecule. Radiation target analysis should be a useful technique for evaluating local RNA:RNA and RNA:protein interactions in vitro.
Resumo:
The high incidence of neurological disorders in patients afflicted with acquired immunodeficiency syndrome (AIDS) may result from human immunodeficiency virus type 1 (HIV-1) induction of chemotactic signals and cytokines within the brain by virus-encoded gene products. Transforming growth factor beta1 (TGF-beta1) is an immunomodulator and potent chemotactic molecule present at elevated levels in HIV-1-infected patients, and its expression may thus be induced by viral trans-activating proteins such as Tat. In this report, a replication-defective herpes simplex virus (HSV)-1 tat gene transfer vector, dSTat, was used to transiently express HIV-1 Tat in glial cells in culture and following intracerebral inoculation in mouse brain in order to directly determine whether Tat can increase TGF-beta1 mRNA expression. dSTat infection of Vero cells transiently transfected by a panel of HIV-1 long terminal repeat deletion mutants linked to the bacterial chloramphenicol acetyltransferase reporter gene demonstrated that vector-expressed Tat activated the long terminal repeat in a trans-activation response element-dependent fashion independent of the HSV-mediated induction of the HIV-1 enhancer, or NF-kappaB domain. Northern blot analysis of human astrocytic glial U87-MG cells transfected by dSTat vector DNA resulted in a substantial increase in steady-state levels of TGF-beta1 mRNA. Furthermore, intracerebral inoculation of dSTat followed by Northern blot analysis of whole mouse brain RNA revealed an increase in levels of TGF-beta1 mRNA similar to that observed in cultured glial cells transfected by dSTat DNA. These results provided direct in vivo evidence for the involvement of HIV-1 Tat in activation of TGF-beta1 gene expression in brain. Tat-mediated stimulation of TGF-beta1 expression suggests a novel pathway by which HIV-1 may alter the expression of cytokines in the central nervous system, potentially contributing to the development of AIDS-associated neurological disease.
Resumo:
By using a crosslinkable probe incorporated into the 3' terminus of nascent transcript, three sites were mapped in Escherichia coli RNA polymerase that are contacted by the RNA in the productive elongation complex. Two of these sites are in the beta subunit and one is in the beta' subunit. During elongation, the transcription complex occasionally undergoes an arrest whereby it can neither extend nor release the RNA transcript. It is demonstrated that in an arrested complex, the three contacts of RNA 3' terminus are lost, while a new beta' subunit contact becomes prominent. Thus, elongation arrest appears to involve the disengagement of the bulk of the active center from the 3' terminus of RNA and the transfer of the terminus into a new protein environment.
Resumo:
This paper describes the use of the baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) as a vector for gene delivery into mammalian cells. A modified AcMNPV virus was prepared that carried the Escherichia coli lacZ reporter gene under control of the Rous sarcoma virus promoter and mammalian RNA processing signals. This modified baculovirus was then used to infect a variety of mammalian cell lines. After infection of the human liver cell lines HepG2, >25% of the cells showed high-level expression of the transduced gene. Over 70% of the cells in primary cultures of rat hepatocytes showed expression of beta-galactosidase after exposure to the virus. Cell lines from other tissues showed less or no expression of lacZ after exposure to the virus. The block to expression in less susceptible cells does not appear to result from the ability to be internalized by the target cell but rather by events subsequent to viral entry. The onset of lacZ expression occurred within 6 hr of infection in HepG2 cells and peaked 12-24 hr postinfection. Because AcMNPV is able to replicate only in insect hosts, is able to carry large (>15 kb) inserts, and is a highly effective gene delivery vehicle for primary cultures of hepatocytes, AcMNPV may be a useful vector for genetic manipulation of liver cells.
Resumo:
Yeast RNA polymerase II holoenzymes have been described that consist of RNA polymerase II, a subset of general transcription factors, and nine SRB regulatory proteins. The feature that distinguishes the RNA polymerase II holoenzymes from other forms of RNA polymerase II in the cell is their tight association with SRB proteins. We investigated the fraction of genes that require SRB proteins in vivo by examining the effect of temperature-sensitive mutations in SRB genes on transcription by RNA polymerase II. Upon transfer to the restrictive temperature, there is a rapid and general shutdown of mRNA synthesis in srb mutant cells. These data, combined with the observation that essentially all of the SRB protein in cells is tightly associated with RNA polymerase II molecules, argue that SRB-containing holoenzymes are the form of RNA polymerase II recruited to most promoters in the cell.
Resumo:
This work was supported by a Knowledge Transfer Network BBSRC Industrial Case (#414 BB/L502467/1) studentship in association Zoetis Inc.
Resumo:
Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.
Resumo:
Telomerase RNAs (TERs) are highly divergent between species, varying in size and sequence composition. Here, we identify a candidate for the telomerase RNA component of Leishmania genus, which includes species that cause leishmaniasis, a neglected tropical disease. Merging a thorough computational screening combined with RNA-seq evidence, we mapped a non-coding RNA gene localized in a syntenic locus on chromosome 25 of five Leishmania species that shares partial synteny with both Trypanosoma brucei TER locus and a putative TER candidate-containing locus of Crithidia fasciculata. Using target-driven molecular biology approaches, we detected a ∼2,100 nt transcript (LeishTER) that contains a 5' spliced leader (SL) cap, a putative 3' polyA tail and a predicted C/D box snoRNA domain. LeishTER is expressed at similar levels in the logarithmic and stationary growth phases of promastigote forms. A 5'SL capped LeishTER co-immunoprecipitated and co-localized with the telomerase protein component (TERT) in a cell cycle-dependent manner. Prediction of its secondary structure strongly suggests the existence of a bona fide single-stranded template sequence and a conserved C[U/C]GUCA motif-containing helix II, representing the template boundary element. This study paves the way for further investigations on the biogenesis of parasite TERT ribonucleoproteins (RNPs) and its role in parasite telomere biology.
Resumo:
Abstract The aim of this study was to evaluate three transfer techniques used to obtain working casts of implant-supported prostheses through the marginal misfit and strain induced to metallic framework. Thirty working casts were obtained from a metallic master cast, each one containing two implant analogues simulating a clinical situation of three-unit implant-supported fixed prostheses, according to the following transfer impression techniques: Group A, squared transfers splinted with dental floss and acrylic resin, sectioned and re-splinted; Group B, squared transfers splinted with dental floss and bis-acrylic resin; and Group N, squared transfers not splinted. A metallic framework was made for marginal misfit and strain measurements from the metallic master cast. The misfit between metallic framework and the working casts was evaluated with an optical microscope following the single-screw test protocol. In the same conditions, the strain was evaluated using strain gauges placed on the metallic framework. The data was submitted to one-way ANOVA followed by the Tukey's test (α=5%). For both marginal misfit and strain, there were statistically significant differences between Groups A and N (p<0.01) and Groups B and N (p<0.01), with greater values for the Group N. According to the Pearson's test, there was a positive correlation between the variables misfit and strain (r=0.5642). The results of this study showed that the impression techniques with splinted transfers promoted better accuracy than non-splinted one, regardless of the splinting material utilized.
Resumo:
G-quadruplexes are secondary structures present in DNA and RNA molecules, which are formed by stacking of G-quartets (i.e., interaction of four guanines (G-tracts) bounded by Hoogsteen hydrogen bonding). Human PAX9 intron 1 has a putative G-quadruplex-forming region located near exon 1, which is present in all known sequenced placental mammals. Using circular dichroism (CD) analysis and CD melting, we showed that these sequences are able to form highly stable quadruplex structures. Due to the proximity of the quadruplex structure to exon-intron boundary, we used a validated double-reporter splicing assay and qPCR to analyze its role on splicing efficiency. The human quadruplex was shown to have a key role on splicing efficiency of PAX9 intron 1, as a mutation that abolished quadruplex formation decreased dramatically the splicing efficiency of human PAX9 intron 1. The less stable, rat quadruplex had a less efficient splicing when compared to human sequences. Additionally, the treatment with 360A, a strong ligand that stabilizes quadruplex structures, further increased splicing efficiency of human PAX9 intron 1. Altogether, these results provide evidences that G-quadruplex structures are involved in splicing efficiency of PAX9 intron 1.
Resumo:
Neks are serine-threonine kinases that are similar to NIMA, a protein found in Aspergillus nidulans which is essential for cell division. In humans there are eleven Neks which are involved in different biological functions besides the cell cycle control. Nek4 is one of the largest members of the Nek family and has been related to the primary cilia formation and in DNA damage response. However, its substrates and interaction partners are still unknown. In an attempt to better understand the role of Nek4, we performed an interactomics study to find new biological processes in which Nek4 is involved. We also described a novel Nek4 isoform which lacks a region of 46 amino acids derived from an insertion of an Alu sequence and showed the interactomics profile of these two Nek4 proteins. Isoform 1 and isoform 2 of Nek4 were expressed in human cells and after an immunoprecipitation followed by mass spectrometry, 474 interacting proteins were identified for isoform 1 and 149 for isoform 2 of Nek4. About 68% of isoform 2 potential interactors (102 proteins) are common between the two Nek4 isoforms. Our results reinforce Nek4 involvement in the DNA damage response, cilia maintenance and microtubule stabilization, and raise the possibility of new functional contexts, including apoptosis signaling, stress response, translation, protein quality control and, most intriguingly, RNA splicing. We show for the first time an unexpected difference between both Nek4 isoforms in RNA splicing control. Among the interacting partners, we found important proteins such as ANT3, Whirlin, PCNA, 14-3-3ε, SRSF1, SRSF2, SRPK1 and hNRNPs proteins. This study provides new insights into Nek4 functions, identifying new interaction partners and further suggests an interesting difference between isoform 1 and isoform 2 of this kinase. Nek4 isoform 1 may have similar roles compared to other Neks and these roles are not all preserved in isoform 2. Besides, in some processes, both isoforms showed opposite effects, indicating a possible fine controlled regulation.