1000 resultados para topologia, superfici, teorema di Seifert van Kampen.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi è finalizzata ad una preliminare fase di sperimentazione di un algoritmo che, a partire da dati di acustica, sia in grado di classificare le specie di pesce presenti in cale mono e plurispecifiche. I dati sono stati acquisiti nella fascia costiera della Sicilia meridionale, durante alcune campagne di ricerca effettuate tra il 2002 e il 2011, dall’IAMC – CNR di Capo Granitola. Sono stati registrati i valori delle variabili ambientali e biotiche tramite metodologia acustica e della composizione dei banchi di pesci catturati tramite cale sperimentali: acciughe, sardine, suri, altre specie pelagiche e pesci demersali. La metodologia proposta per la classificazione dei segnali acustici nasce dalla fusione di logica fuzzy e teorema di Bayes, per dar luogo ad un approccio modellistico consistente in un compilatore naïve Bayes operante in ambiente fuzzy. Nella fattispecie si è proceduto alla fase di training del classificatore, mediante un learning sample di percentuali delle categorie ittiche sopra menzionate, e ai dati di alcune delle osservazioni acustiche, biotiche e abiotiche, rilevate dall’echosurvey sugli stessi banchi. La validazione del classificatore è stata effettuata sul test set, ossia sui dati che non erano stati scelti per la fase di training. Per ciascuna cala, sono stati infine tracciati dei grafici di dispersione/correlazione dei gruppi ittici e le percentuali simulate. Come misura di corrispondenza dei dati sono stati considerati i valori di regressione R2 tra le percentuali reali e quelle calcolate dal classificatore fuzzy naïve Bayes. Questi, risultando molto alti (0,9134-0,99667), validavano il risultato del classificatore che discriminava con accuratezza le ecotracce provenienti dai banchi. L’applicabilità del classificatore va comunque testata e verificata oltre i limiti imposti da un lavoro di tesi; in particolare la fase di test va riferita a specie diverse, a condizioni ambientali al contorno differenti da quelle riscontrate e all’utilizzo di learning sample meno estesi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi viene trattata la trasformata di Fourier per funzioni sommabili, con particolare riguardo per il cosiddetto teorema di inversione, che permette il calcolo di sofisticati integrali reali. Viene inoltre fornito un capitolo di premesse di analisi complessa, utili al calcolo esplicito di trasformate di Fourier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scopo di questo elaborato è la trattazione del momento di inerzia di un sistema meccanico rispetto ad una retta, con particolare attenzione alla struttura geometrica associata a questa nozione, ovvero all’ellissoide di inerzia. Si parte dalla definizione delle grandezze meccaniche fondamentali, passando per le equazioni cardinali della dinamica, arrivando a dimostrare il teorema di König. Viene poi studiato il momento di inerzia ed evidenziato il suo ruolo importante per la determinazione del momento angolare e dell’energia cinetica: in particolare è emersa la centralità dell’ellissoide d’inerzia. Si conclude con la dimostrazione del teorema di Huyghens e alcuni esempi espliciti di calcolo dell’ellissoide di inerzia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scopo della tesi è presentare alcuni aspetti della teoria spettrale per operatori compatti definiti su spazi di Hilbert separabili. Il primo capitolo è dedicato al Teorema di esistenza di una base numerabile di autovettori, per operatori compatti autoaggiunti. Nel secondo capitolo sono presentate alcune applicazioni dirette al Laplaciano. Viene dimostrato il teorema di immersione di Sobolev, e come conseguenza dell'immersione compatta, si prova che l'inverso del Laplaciano su aperti limitati è un operatore compatto autoaggiunto. Conseguentemente viene determinata la base dei suoi autovettori, che in dimensione uno è la classica serie di Fourier. Nel terzo capitolo vengono determinate le espressioni analitiche delle basi di autovettori sul quadrato e il cerchio unitario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro studiamo le funzioni armoniche e le loro proprietà: le formule di media, il principio del massimo e del minimo (forte e debole), la disuguaglianza di Harnack e il teorema di Louiville. Successivamente scriviamo la prima e la seconda identità di Green, che permettono di ottenere esplicitamente la soluzione fondamentale dell’equazione di Laplace, tramite il calcolo delle soluzioni radiali del Laplaciano. Introduciamo poi la funzione di Green, da cui si ottiene una formula di rappresentazione per le funzioni armoniche. Se il dominio di riferimento è una palla, la funzione di Green può essere determinata esplicitamente, e ciò conduce alla rappresentazione integrale di Poisson per le funzioni armoniche in una palla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo di questa tesi è lo studio della risolubilità per radicali di equazioni polinomiali nel caso in cui il campo dei coefficienti del polinomio abbia caratteristica zero. Nel primo capitolo vengono richiamati i principali risultati riguardanti la teoria di Galois. Nel secondo capitolo si introducono le nozioni di gruppo risolubile e gruppo semplice analizzandone le proprietà. Nel terzo capitolo si definiscono le estensioni di campi radicali e risolubili. Viene inoltre dimostrato il teorema di Galois che mette in evidenza il legame tra gruppi risolubili ed estensioni risolubili. Infine, nell'ultimo capitolo, si applicano i risultati ottenuti al problema della risolubilità per radicali delle equazioni polinomiali dando anche diversi esempi. In particolare viene analizzato il caso del polinomio universale di grado n.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si dimostra che una classe di trasformazioni espandenti a tratti sull'intervallo unitario soddisfa le ipotesi di un teorema di analisi funzionale contenuto nell'articolo "Rare Events, Escape Rates and Quasistationarity: Some Exact Formulae" di G. Keller e C. Liverani. Si considera un sistema dinamico aperto, con buco di misura epsilon. Se al diminuire di epsilon i buchi costituiscono una famiglia decrescente di sottointervalli di I, e per epsilon che tende a zero essi tendono a un buco formato da un solo punto, allora il teorema precedente consente di dimostrare la differenziabilità del tasso di fuga del sistema aperto, visto come funzione della dimensione del buco. In particolare, si ricava una formula esplicita per l'espansione al prim'ordine del tasso di fuga .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo di questa tesi è quello di presentare l'applicazione di tecniche legate alla Teoria di Taglia a un problema di analisi di immagini biomediche. Il lavoro nasce dalla collaborazione del gruppo di Matematica della Visione dell'Università di Bologna, con il progetto PERFECT del Centro di Ricerca ARCES. La tesi si pone quindi come analisi preliminare di approccio alternativo ai metodi preesistenti. I metodi sono principalmente di Topologia Algebrica Applicata, ambito emergente e rilevante nel mondo della Matematica Computazionale. Il nucleo dell'elaborazione è costituito dall'analisi di forma dei dati per mezzo di Funzioni di Taglia. Questa nozione è stata introdotta nel 1999 da Patrizio Frosini e in seguito sviluppata principalmente dallo stesso, Massimo Ferri, Claudia Landi e altri collaboratori appartenuti al Gruppo di Ricerca di Matematica della Visione dell'Università di Bologna.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enunciati indipendenti dagli assiomi dell'aritmetica di Peano; è rivolta particolare attenzione all'indipendenza del teorema di Goodstein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il teorema di Chevalley-Shephard-Todd è un importante risultato del 1954/1955 nella teoria degli invarianti polinomiali sotto l'azione del gruppo delle matrici invertibili. Lo scopo di questa tesi è presentare e dimostrare il teorema nella versione in cui l'anello dei polinomi ha come campo base R e di vedere alcuni esempi concreti di applicazione del teorema. Questa dimostrazione può essere generalizzata facilmente avendo come campo base un qualsiasi campo K di caratteristica 0.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi si occupa della teoria spettrale di certi sistemi di equazioni ordinarie chiamati oscillatori non commutativi. Dopo avere introdotto i fondamenti necessari per la teoria vengono dimostrati alcuni teoremi qualitativi sullo spettro di tali sistemi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi presenta l'algoritmo AKS, deterministico e polinomiale, scoperto dai matematici Agrawal, Kayal e Saxena nel 2002. Esso si basa su una generalizzazione del Piccolo Teorema di Fermat all'anello dei polinomi a coefficienti in Zp.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi, che si colloca nell'ambito della topologia algebrica, si affronta l'approccio allo studio delle 3-varietà mediante il concetto di rivestimento. In particolare si studiano i rivestimenti ramificati il cui l'insieme di ramificazione è un link. Il tema centrale della tesi è il teorema di Hilden-Montesinos, che in particolare tratta di rivestimenti ramificati di ordine 3 semplici. Per questo si affronta il concetto di monodromia e di gruppo di un link. L'ultima parte descrive il problema di trovare equivalenze tra diagrammi colorati che rappresentano 3-varietà, mostrando infine una possibile soluzione trovata da Riccardo Piergallini.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lo scopo di questa tesi è di studiare i principali risultati riguardanti le estensioni trascendenti di campi, l'indipendenza algebrica di elementi trascendenti su un campo, le basi di trascendenza di un'estensione. A partire da questi risultati vengono dimostrati due importanti teoremi di geometria algebrica: il Teorema degli zeri di Hilbert e il Teorema di Lüroth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi nasce dal voler approfondire lo studio delle curve piane di grado 3 iniziato nel corso di Geometria Proiettiva. In particolare si andrà a studiare la legge di gruppo che si può definire su tali curve e i punti razionali di ordine finito appartenenti alle curve ellittiche. Nel primo capitolo si parla di equazioni diofantee, dell’Ultimo Teorema di Fermat, dell'equazione e della formula di duplicazione di Bachet. Si parla inoltre dello stretto rapporto tra la geometria, l'algebra e la teoria dei numeri nella teoria delle curve ellittiche e come le curve ellittiche siano importanti nella crittografia. Nel secondo capitolo vengono enunciate alcune definizioni, proposizioni e teoremi, riguardanti polinomi e curve ellittiche. Nel terzo capitolo viene introdotta la forma normale di una cubica. Nel quarto capitolo viene descritta la legge di gruppo su una cubica piana non singolare e la costruzione geometrica che porta ad essa; si vede il caso particolare della legge di gruppo per una cubica razionale in forma normale ed inoltre si ricavano le formule esplicite per la somma di due punti appartenenti ad una cubica. Nel capitolo cinque si iniziano a studiare i punti di ordine finito per una curva ellittica con la legge di gruppo dove l'origine è un flesso: vengono descritti e studiati i punti di ordine 2 e quelli di ordine 3. Infine, nel sesto capitolo si studiano i punti razionali di ordine finito qualsiasi: viene introdotto il concetto di discriminante di una cubica e successivamente viene enunciato e dimostrato il teorema di Nagell-Lutz.