968 resultados para text vector space model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantum mechanics associate to some symplectic manifolds M a quantum model Q(M), which is a Hilbert space. The space Q(M) is the quantum mechanical analogue of the classical phase space M. We discuss here relations between the volume of M and the dimension of the vector space Q(M). Analogues for convex polyhedra are considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Text classification is essential for narrowing down the number of documents relevant to a particular topic for further pursual, especially when searching through large biomedical databases. Protein-protein interactions are an example of such a topic with databases being devoted specifically to them. This paper proposed a semi-supervised learning algorithm via local learning with class priors (LL-CP) for biomedical text classification where unlabeled data points are classified in a vector space based on their proximity to labeled nodes. The algorithm has been evaluated on a corpus of biomedical documents to identify abstracts containing information about protein-protein interactions with promising results. Experimental results show that LL-CP outperforms the traditional semisupervised learning algorithms such as SVMand it also performs better than local learning without incorporating class priors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model predictive controller (MPC) is proposed, which is robustly stable for some classes of model uncertainty and to unknown disturbances. It is considered as the case of open-loop stable systems, where only the inputs and controlled outputs are measured. It is assumed that the controller will work in a scenario where target tracking is also required. Here, it is extended to the nominal infinite horizon MPC with output feedback. The method considers an extended cost function that can be made globally convergent for any finite input horizon considered for the uncertain system. The method is based on the explicit inclusion of cost contracting constraints in the control problem. The controller considers the output feedback case through a non-minimal state-space model that is built using past output measurements and past input increments. The application of the robust output feedback MPC is illustrated through the simulation of a low-order multivariable system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the MPC literature, stability is usually assured under the assumption that the state is measured. Since the closed-loop system may be nonlinear because of the constraints, it is not possible to apply the separation principle to prove global stability for the Output feedback case. It is well known that, a nonlinear closed-loop system with the state estimated via an exponentially converging observer combined with a state feedback controller can be unstable even when the controller is stable. One alternative to overcome the state estimation problem is to adopt a non-minimal state space model, in which the states are represented by measured past inputs and outputs [P.C. Young, M.A. Behzadi, C.L. Wang, A. Chotai, Direct digital and adaptative control by input-output, state variable feedback pole assignment, International journal of Control 46 (1987) 1867-1881; C. Wang, P.C. Young, Direct digital control by input-output, state variable feedback: theoretical background, International journal of Control 47 (1988) 97-109]. In this case, no observer is needed since the state variables can be directly measured. However, an important disadvantage of this approach is that the realigned model is not of minimal order, which makes the infinite horizon approach to obtain nominal stability difficult to apply. Here, we propose a method to properly formulate an infinite horizon MPC based on the output-realigned model, which avoids the use of an observer and guarantees the closed loop stability. The simulation results show that, besides providing closed-loop stability for systems with integrating and stable modes, the proposed controller may have a better performance than those MPC controllers that make use of an observer to estimate the current states. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses robust model-order reduction of a high dimensional nonlinear partial differential equation (PDE) model of a complex biological process. Based on a nonlinear, distributed parameter model of the same process which was validated against experimental data of an existing, pilot-scale BNR activated sludge plant, we developed a state-space model with 154 state variables in this work. A general algorithm for robustly reducing the nonlinear PDE model is presented and based on an investigation of five state-of-the-art model-order reduction techniques, we are able to reduce the original model to a model with only 30 states without incurring pronounced modelling errors. The Singular perturbation approximation balanced truncating technique is found to give the lowest modelling errors in low frequency ranges and hence is deemed most suitable for controller design and other real-time applications. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

No âmbito da condução da política monetária, as funções de reação estimadas em estudos empíricos, tanto para a economia brasileira como para outras economias, têm mostrado uma boa aderência aos dados. Porém, os estudos mostram que o poder explicativo das estimativas aumenta consideravelmente quando se inclui um componente de suavização da taxa de juros, representado pela taxa de juros defasada. Segundo Clarida, et. al. (1998) o coeficiente da taxa de juros defasada (situado ente 0,0 e 1,0) representaria o grau de inércia da política monetária, e quanto maior esse coeficiente, menor e mais lenta é a resposta da taxa de juros ao conjunto de informações relevantes. Por outro lado, a literatura empírica internacional mostra que esse componente assume um peso expressivo nas funções de reação, o que revela que os BCs ajustam o instrumento de modo lento e parcimonioso. No entanto, o caso brasileiro é de particular interesse porque os trabalhos mais recentes têm evidenciado uma elevação no componente inercial, o que sugere que o BCB vem aumentando o grau de suavização da taxa de juros nos últimos anos. Nesse contexto, mais do que estimar uma função de reação forward looking para captar o comportamento global médio do Banco Central do Brasil no período de Janeiro de 2005 a Maio de 2013, o trabalho se propôs a procurar respostas para uma possível relação de causalidade dinâmica entre a trajetória do coeficiente de inércia e as variáveis macroeconômicas relevantes, usando como método a aplicação do filtro de Kalman para extrair a trajetória do coeficiente de inércia e a estimação de um modelo de Vetores Autorregressivos (VAR) que incluirá a trajetória do coeficiente de inércia e as variáveis macroeconômicas relevantes. De modo geral, pelas regressões e pelo filtro de Kalman, os resultados mostraram um coeficiente de inércia extremamente elevado em todo o período analisado, e coeficientes de resposta global muito pequenos, inconsistentes com o que é esperado pela teoria. Pelo método VAR, o resultado de maior interesse foi o de que choques positivos na variável de inércia foram responsáveis por desvios persistentes no hiato do produto e, consequentemente, sobre os desvios de inflação e de expectativas de inflação em relação à meta central.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coe¢ cients to change over time, but also allow for the entire forecasting model to change over time. We nd that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coe¢ cient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We forecast quarterly US inflation based on the generalized Phillips curve using econometric methods which incorporate dynamic model averaging. These methods not only allow for coe¢ cients to change over time, but also allow for the entire forecasting model to change over time. We nd that dynamic model averaging leads to substantial forecasting improvements over simple benchmark regressions and more sophisticated approaches such as those using time varying coe¢ cient models. We also provide evidence on which sets of predictors are relevant for forecasting in each period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new model of trend (or underlying) inflation. In contrast to many earlier approaches, which allow for trend inflation to evolve according to a random walk, ours is a bounded model which ensures that trend inflation is constrained to lie in an interval. The bounds of this interval can either be fixed or estimated from the data. Our model also allows for a time-varying degree of persistence in the transitory component of inflation. The bounds placed on trend inflation mean that standard econometric methods for estimating linear Gaussian state space models cannot be used and we develop a posterior simulation algorithm for estimating the bounded trend inflation model. In an empirical exercise with CPI inflation we find the model to work well, yielding more sensible measures of trend inflation and forecasting better than popular alternatives such as the unobserved components stochastic volatility model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we develop methods for estimation and forecasting in large timevarying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also draw on ideas from the dynamic model averaging literature and extend the TVP-VAR so that its dimension can change over time. A final extension lies in the development of a new method for estimating, in a time-varying manner, the parameter(s) of the shrinkage priors commonly-used with large VARs. These extensions are operationalized through the use of forgetting factor methods and are, thus, computationally simple. An empirical application involving forecasting inflation, real output, and interest rates demonstrates the feasibility and usefulness of our approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the usefulness of switching Gaussian state space models as a tool for implementing dynamic model selecting (DMS) or averaging (DMA) in time-varying parameter regression models. DMS methods allow for model switching, where a different model can be chosen at each point in time. Thus, they allow for the explanatory variables in the time-varying parameter regression model to change over time. DMA will carry out model averaging in a time-varying manner. We compare our exact approach to DMA/DMS to a popular existing procedure which relies on the use of forgetting factor approximations. In an application, we use DMS to select different predictors in an in ation forecasting application. We also compare different ways of implementing DMA/DMS and investigate whether they lead to similar results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El desplaçament de poblacions a causa de conflictes violents s’ha convertit en una de les principals preocupacions humanitàries de les últimes dècades. També s’ha convertit en un assumpte polític de gran rellevància, que és percebut com un llast (en termes econòmics i de seguretat), però també com a peça important en la transició cap a un intervencionisme més gran en el sistema internacional, tant des d’una base humanitària com de seguretat. La importància d’aquests aspectes ha desviat l’atenció de l’anàlisi de les interaccions entre els processos de desplaçament i els conflictes violents que els provoquen. La literatura sobre els conflictes violents ha obviat aquestes interaccions, degut principalment a que els processos de desplaçament són considerats com meres reaccions definides per condicions estructurals. Aquest article parteix de la premissa que l’individu reté la seva capacitat decisiva en aquests processos i que es tracta d’una capacitat que té conseqüències. Per tant, és necessari introduir en l’anàlisi una perspectiva a nivell micro. Partint d’aquesta premissa, el text presenta un model de la decisió de retorn a nivell individual i també a nivell agregat. A més, permet identificar interconnexions fonamentals d’aquestes dinàmiques amb els conflictes violents. Finalment, l’article ofereix algunes conclusions rellevants per al cas de Bòsnia-Herzegovina i sobre les implicacions de la politització del retorn.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This note describes how the Kalman filter can be modified to allow for thevector of observables to be a function of lagged variables without increasing the dimensionof the state vector in the filter. This is useful in applications where it is desirable to keepthe dimension of the state vector low. The modified filter and accompanying code (whichnests the standard filter) can be used to compute (i) the steady state Kalman filter (ii) thelog likelihood of a parameterized state space model conditional on a history of observables(iii) a smoothed estimate of latent state variables and (iv) a draw from the distribution oflatent states conditional on a history of observables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El déficit existente a nuestro país con respecto a la disponibilidad de indicadores cuantitativos con los que llevar a término un análisis coyuntural de la actividad industrial regional ha abierto un debate centrado en el estudio de cuál es la metodología más adecuada para elaborar indicadores de estas características. Dentro de este marco, en este trabajo se presentan las principales conclusiones obtenidas en anteriores estudios (Clar, et. al., 1997a, 1997b y 1998) sobre la idoneidad de extender las metodologías que actualmente se están aplicando a las regiones españolas para elaborar indicadores de la actividad industrial mediante métodos indirectos. Estas conclusiones llevan a plantear una estrategia distinta a las que actualmente se vienen aplicando. En concreto, se propone (siguiendo a Israilevich y Kuttner, 1993) un modelo de variables latentes para estimar el indicador de la producción industrial regional. Este tipo de modelo puede especificarse en términos de un modelo statespace y estimarse mediante el filtro de Kalman. Para validar la metodología propuesta se estiman unos indicadores de acuerdo con ella para tres de las cuatro regiones españolas que disponen d¿un Índice de Producción Industrial (IPI) elaborado mediante el método directo (Andalucía, Asturias y el País Vasco) y se comparan con los IPIs publicados (oficiales). Los resultados obtenidos muestran el buen comportamiento de l¿estrategia propuesta, abriendo así una línea de trabajo con la que subsanar el déficit al que se hacía referencia anteriormente

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El déficit existente a nuestro país con respecto a la disponibilidad de indicadores cuantitativos con los que llevar a término un análisis coyuntural de la actividad industrial regional ha abierto un debate centrado en el estudio de cuál es la metodología más adecuada para elaborar indicadores de estas características. Dentro de este marco, en este trabajo se presentan las principales conclusiones obtenidas en anteriores estudios (Clar, et. al., 1997a, 1997b y 1998) sobre la idoneidad de extender las metodologías que actualmente se están aplicando a las regiones españolas para elaborar indicadores de la actividad industrial mediante métodos indirectos. Estas conclusiones llevan a plantear una estrategia distinta a las que actualmente se vienen aplicando. En concreto, se propone (siguiendo a Israilevich y Kuttner, 1993) un modelo de variables latentes para estimar el indicador de la producción industrial regional. Este tipo de modelo puede especificarse en términos de un modelo statespace y estimarse mediante el filtro de Kalman. Para validar la metodología propuesta se estiman unos indicadores de acuerdo con ella para tres de las cuatro regiones españolas que disponen d¿un Índice de Producción Industrial (IPI) elaborado mediante el método directo (Andalucía, Asturias y el País Vasco) y se comparan con los IPIs publicados (oficiales). Los resultados obtenidos muestran el buen comportamiento de l¿estrategia propuesta, abriendo así una línea de trabajo con la que subsanar el déficit al que se hacía referencia anteriormente