985 resultados para tempo linear
Resumo:
A monitoring network of atmospheric electric field covering the Vale do Paraiba region was implemented. The sensors were located on different sites with different altitude and geographic topology. The present work reports the study carried on those sensors in order to verify the necessity of using some correction factor to the measured local electric field intensity due to effects of local environment. The measurements were done in continuous 24 hours per day with the data recorded on registers in each device accumulating information during a period of four months. The relation between the electric field values by each sensor was compared to the reference located on Sao Jose dos Campos city using the same period. In a graphical analysis using the local field intensity and the reference, the data were fitted to a straight line obtained by minimum square method. Variation up to 95% was observed between the field values in some sensors. Another method was proposed, comparing the mean values of the electric field in a function of time. The variation in some sensors reached up to 133%. We conclude that the variations are due to local atmospheric conditions and no correction factor is required on the electric field sensors
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Física - FEG
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Arquitetura e Urbanismo - FAAC
Resumo:
The control of a proton exchange membrane fuel cell system (PEM FC) for domestic heat and power supply requires extensive control measures to handle the complicated process. Highly dynamic and non linear behavior, increase drastically the difficulties to find the optimal design and control strategies. The objective is to design, implement and commission a controller for the entire fuel cell system. The fuel cell process and the control system are engineered simultaneously; therefore there is no access to the process hardware during the control system development. Therefore the method of choice was a model based design approach, following the rapid control prototyping (RCP) methodology. The fuel cell system is simulated using a fuel cell library which allowed thermodynamic calculations. In the course of the development the process model is continuously adapted to the real system. The controller application is designed and developed in parallel and thereby tested and verified against the process model. Furthermore, after the commissioning of the real system, the process model can be also better identified and parameterized utilizing measurement data to perform optimization procedures. The process model and the controller application are implemented in Simulink using Mathworks` Real Time Workshop (RTW) and the xPC development suite for MiL (model-in-theloop) and HiL (hardware-in-the-loop) testing. It is possible to completely develop, verify and validate the controller application without depending on the real fuel cell system, which is not available for testing during the development process. The fuel cell system can be immediately taken into operation after connecting the controller to the process.
Resumo:
O presente estudo considera a aplicação do modelo SISAGUA de simulação matemática e de otimização para a operação de sistemas de reservatórios integrados em sistemas complexos para o abastecimento de água. O SISAGUA utiliza a programação não linear inteira mista (PNLIM) com os objetivos de evitar ou minimizar racionamentos, equilibrar a distribuição dos armazenamentos em sistemas com múltiplos reservatórios e minimizar os custos de operação. A metodologia de otimização foi aplicada para o sistema produtor de água da Região Metropolitana de São Paulo (RMSP), que enfrenta a crise hídrica diante de um cenário de estiagem em 2013-2015, o pior na série histórica dos últimos 85 anos. Trata-se de uma região com 20,4 milhões de habitantes. O sistema é formado por oito sistemas produtores parcialmente integrados e operados pela Sabesp (Companhia de Saneamento do Estado de São Paulo). A RMSP é uma região com alta densidade demográfica, localizada na Bacia Hidrográfica do Alto Tietê e caracterizada pela baixa disponibilidade hídrica per capita. Foi abordada a possibilidade de considerar a evaporação durante as simulações, e a aplicação de uma regra de racionamento contínua nos reservatórios, que transforma a formulação do problema em programação não linear (PNL). A evaporação se mostrou pouco representativa em relação a vazão de atendimento à demanda, com cerca de 1% da vazão. Se por um lado uma vazão desta magnitude pode contribuir em um cenário crítico, por outro essa ordem de grandeza pode ser comparada às incertezas de medições ou previsões de afluências. O teste de sensibilidade das diferentes taxas de racionamento em função do volume armazenado permite analisar o tempo de resposta de cada sistema. A variação do tempo de recuperação, porém, não se mostrou muito significativo.
Resumo:
A aquisição experimental de sinais neuronais é um dos principais avanços da neurociência. Por meio de observações da corrente e do potencial elétricos em uma região cerebral, é possível entender os processos fisiológicos envolvidos na geração do potencial de ação, e produzir modelos matemáticos capazes de simular o comportamento de uma célula neuronal. Uma prática comum nesse tipo de experimento é obter leituras a partir de um arranjo de eletrodos posicionado em um meio compartilhado por diversos neurônios, o que resulta em uma mistura de sinais neuronais em uma mesma série temporal. Este trabalho propõe um modelo linear de tempo discreto para o sinal produzido durante o disparo do neurônio. Os coeficientes desse modelo são calculados utilizando-se amostras reais dos sinais neuronais obtidas in vivo. O processo de modelagem concebido emprega técnicas de identificação de sistemas e processamento de sinais, e é dissociado de considerações sobre o funcionamento biofísico da célula, fornecendo uma alternativa de baixa complexidade para a modelagem do disparo neuronal. Além disso, a representação por meio de sistemas lineares permite idealizar um sistema inverso, cuja função é recuperar o sinal original de cada neurônio ativo em uma mistura extracelular. Nesse contexto, são discutidas algumas soluções baseadas em filtros adaptativos para a simulação do sistema inverso, introduzindo uma nova abordagem para o problema de separação de spikes neuronais.
Resumo:
Atualmente, assiste-se na nossa sociedade a um recurso e uso massivo de equipamentos eletrónicos portáteis. Este facto, aliado à competitividade de mercado, exigiu o desenvolvimento desses equipamentos com o intuito de melhorar a sua gestão de potência e, obter, consequentemente, maior autonomia e rendimento. Assim, na gestão de potência de um SoC são os reguladores de tensão que assumem um papel de extrema importância. O trabalho realizado ao longo da presente dissertação pressupõe o projeto de um regulador linear de tensão do tipo LDO em tecnologia HV-CMOS, capaz de suportar tensões de entrada de 12V com vista à alimentação de blocos funcionais RF-CMOS com 3,3V e uma corrente de 100mA. Foi implementado através do processo CMOS de 0.35μm de 50V da Austria Micro Systems. A corrente de quiescente do regulador linear de tensão que determina a eficiência de corrente é de 120,22μA. Possui uma eficiência de corrente de 99,88% e um rendimento de 82,46% quando a tensão mínima de entrada é utilizada. O regulador linear de tensão possui uma tensão de dropout de 707mV. A estabilidade do sistema é mantida mesmo com transições de carga de 10μA para 100mA. O regulador possui um tempo de estabelecimento inferior a 2,4μs e uma variação da tensão de saída relativamente ao seu valor nominal inferior a 18mV, ambos para o pior caso. Porém, este regulador possui um undershoot e um overshoot de +- 1,85V.
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2015.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade UnB Gama, Faculdade de Tecnologia, Programa de Pós-graduação em Integridade de Materiais da Engenharia, 2016.
Resumo:
Forecast is the basis for making strategic, tactical and operational business decisions. In financial economics, several techniques have been used to predict the behavior of assets over the past decades.Thus, there are several methods to assist in the task of time series forecasting, however, conventional modeling techniques such as statistical models and those based on theoretical mathematical models have produced unsatisfactory predictions, increasing the number of studies in more advanced methods of prediction. Among these, the Artificial Neural Networks (ANN) are a relatively new and promising method for predicting business that shows a technique that has caused much interest in the financial environment and has been used successfully in a wide variety of financial modeling systems applications, in many cases proving its superiority over the statistical models ARIMA-GARCH. In this context, this study aimed to examine whether the ANNs are a more appropriate method for predicting the behavior of Indices in Capital Markets than the traditional methods of time series analysis. For this purpose we developed an quantitative study, from financial economic indices, and developed two models of RNA-type feedfoward supervised learning, whose structures consisted of 20 data in the input layer, 90 neurons in one hidden layer and one given as the output layer (Ibovespa). These models used backpropagation, an input activation function based on the tangent sigmoid and a linear output function. Since the aim of analyzing the adherence of the Method of Artificial Neural Networks to carry out predictions of the Ibovespa, we chose to perform this analysis by comparing results between this and Time Series Predictive Model GARCH, developing a GARCH model (1.1).Once applied both methods (ANN and GARCH) we conducted the results' analysis by comparing the results of the forecast with the historical data and by studying the forecast errors by the MSE, RMSE, MAE, Standard Deviation, the Theil's U and forecasting encompassing tests. It was found that the models developed by means of ANNs had lower MSE, RMSE and MAE than the GARCH (1,1) model and Theil U test indicated that the three models have smaller errors than those of a naïve forecast. Although the ANN based on returns have lower precision indicator values than those of ANN based on prices, the forecast encompassing test rejected the hypothesis that this model is better than that, indicating that the ANN models have a similar level of accuracy . It was concluded that for the data series studied the ANN models show a more appropriate Ibovespa forecasting than the traditional models of time series, represented by the GARCH model
Resumo:
The effects of the Linear Alkylbenzene Sulphonate (LAS) were evaluated on the mussel Perna perna (Linnaeus, 1758), using a cellular level biomarker. The Neutral Red Retention Time (NRRT) assay was used to estimate effects at cellular levels. Significant effects were observed for the NRRT assay, even in low concentrations. The effects at cellular level were progressive, suggesting that the organisms are not capable to recover of such increasing effects. Additionally, the results show that the levels of LAS observed for Brazilian coastal waters may chronically affect the biota.