909 resultados para sustainable building,


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Road and highway infrastructure provides the backbone for a nation's economic growth. The versatile dispersion of population in Australia, from sparsely settled communities in remote areas to regenerated inner city suburbs with high density living in metropolitans, calls for continuing development and improvement on roads infrastructure under the current federal government policies and state governments' strategic plans. As road infrastructure projects involve large resources and mechanism, achieving sustainability not only in economic scales but also through environmental and social responsibility becomes a crucial issue. Current efforts are often impeded by different interpretation on sustainability agenda by stakeholders involved in these types of projects. As a result, sustainability deliverables at the project level is not often as transparent and measurable, compared to promises in project briefs and designs. This paper reviews the past studies on sustainable infrastructure construction, focusing on roads and highway projects. Through literature study and consultation with the industry, key sustainability indicators specific to road infrastructure projects have been identified. Based on these findings, this paper introduces an on-going research project aimed at identifying and integrating the different perceptions and priority needs of the stakeholders, and issues that impact on the gap between sustainability foci and its actual realization at project end level. The exploration helps generate an integrated decision-making model for sustainable road infrastructure projects. The research will promote to the industry more systematic and integrated approaches to decision-making on the implementation of sustainability strategies to achieve deliverable goals throughout the development and delivery process of road infrastructure projects in Australia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Public awareness and the nature of highway construction works demand that sustainability measures are first on the development agenda. However, in the current economic climate, individual volition and enthusiasm for such high capital investments do not present as strong cases for decision making as the financial pictures of pursuing sustainability. Some stakeholders consider sustainability to be extra work that costs additional money. Though, stakeholders realised its importance in infrastructure development. They are keen to identify the available alternatives and financial implications on a lifecycle basis. Highway infrastructure development is a complex rocess which requires expertise and tools to evaluate investment options, such as environmentally sustainable features for road and highway development. Life-cycle cost analysis (LCCA) is a valuable approach for investment decision making for construction works. However, LCCA applications in highway development are still limited. Current models, for example focus on economic issues alone and do not deal with sustainability factors, which are more difficult to quantify and encapsulate in estimation modules. This paper reports the research which identifies sustainability related factors in highway construction projects, in quantitative and qualitative forms of a multi-criteria analysis. These factors are then incorporated into past and proven LCCA models to produce a new long term decision support model. The research via questionnaire, model building, analytical hierarchy processes (AHP) and case studies have identified, evaluated and then processed highway sustainability related cost elements. These cost elements need to be verified by industry before being integrated for further development of the model. Then the Australian construction industry will have a practical tool to evaluate investment decisions which provide an optimum balance between financial viability and sustainability deliverables.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the societal awareness on sustainability is gaining momentum worldwide, the higher education sector is expected to take the lead in education, research and the promotion of sustainable development. Universities have the diversity of skills and knowledge to explore new concepts and issues, the academic freedom to offer unbiased observations, and the capacity to engage in experimentation for solutions. There is a global trend that universities have realized and responded to sustainability challenge. By adopting green technologies, buildings on university campuses have the potential to offer highly productive and green environments for a quality learning experience for students, while minimising environmental impacts. Despite the potential benefits and metaphorical link to sustainability, few universities have moved towards implementing Green Roof and Living Wall on campuses widely, which have had more successful applications in commercial and residential buildings. Few past research efforts have examined the fundamental barriers to the implementation of sustainable projects on campuses from organizational level. To address this deficiency, an on-going research project is undertaken by Queensland University of Technology in Australia. The research is aimed at developing a comprehensive framework to facilitate better decision making for the promotion of Green Roof and Living Wall application on campuses. It will explore and highlight organizational factors as well as investigate and emphasize project delivery issues. Also, the critical technical indicators for Green Roof and Living Wall implementation will be identified. The expected outcome of this research has the potential to enhance Green Roof and Living Wall delivery in Australian universities, as a vital step towards realizing sustainability in higher education sectors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a lead project currently underway through Australia’s Sustainable Built Environment National Research Centre evaluating diffusion mechanisms and impacts of R&D investment in the Australian built environment. Through a retrospective analysis of R&D investment trends and industry outcomes, and a prospective assessment of industry futures using strategic foresighting, a future-focussed industry R&D roadmap and pursuant policy guidelines will be developed. This research aims to build new understandings and knowledge relevant to R&D funding strategies, research team formation and management, dissemination of outcomes and industry uptake. Each of these issues are critical due to: the disaggregated nature of the built environment industry; intense competition; limited R&D investment; and new challenges (e.g. IT, increased environmental expectations). This paper details the context within which this project is being undertaken and the research design. Findings of the retrospective analysis of past R&D investment in Australia will be presented at this conference.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite an increasing highlight on the sustainability agenda by the construction industry, sustainable development is often treated with different philosophy, interpretation, and responsibility at various stages of project development by various stakeholders involved. The actual sustainability deliverables from the industry is not substantially tangible, especially at project levels. For infrastructure projects which typically span over long periods of time, achieving consistent sustainability outcomes during various stages of development remains as a formidable task. The absence of common understanding among stakeholders and the lack of appropriate sustainability reporting mechanism are possible causes. Many policies dealing with these issues tend to be too generic and broad-based for practical adaptation. While there had been a plenty of research initiatives on sustainability assessment, there is often a gap between sustainability deliverables during project implementation and the grandeur of promises during project conception. This paper reviews the historical context of sustainable development and its principles, and past studies on sustainable construction, focusing on infrastructure projects. It goes on to introduce a QUT research project aimed at identifying and integrating the different perceptions and priority needs of the stakeholders, along with identifying issues that impact on the gap between sustainability foci and its actual realization at project end level, in order to generate a framework of enhancing sustainable deliverables. It is expected that the research will help promote more integrated approaches to decision-making on the implementation of sustainability strategies and foci during the construction project delivery processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In 2003, the Green Building Council of Australia (GBCA) launched their Green Star rating tools for various types of buildings in order to promote green building practice in Australia. Of these, the Green Star-Office Interior rating tool is designed for building owners, tenants and interior designers to assess the environmental impact of an interior fitout. It covers a number of categories, including Management, Indoor Environment Quality, Energy, Transport, Water, Materials, Land Use and Ecology, Emissions, and Innovation. This paper reviews the usage of the Green Star system in Australian office tenancy fitouts and the potential challenges associated with Green Star-Office Interior implementation. This involves the analysis of score sheets of 66 office interior projects across Australia that achieved Green Star certification. The percentage of green star points obtained within each category and sub-categories (credits) for each project are investigated to illustrate the achievement of credits. The results show that Emission-related credits and Innovation related credits are the easiest and most difficult respectively to obtain. It is also found that 6 Green Star office interior projects perform especially better in the categories of Energy and Ecology than 4 and 5 Star projects. The investigation of point frequency in each category provides prospective Green Star applicants with insights into credit achievement for future projects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Policy makers increasingly recognise that an educated workforce with a high proportion of Science, Technology, Engineering and Mathematics (STEM) graduates is a pre-requisite to a knowledge-based, innovative economy. Over the past ten years, the proportion of first university degrees awarded in Australia in STEM fields is below the global average and continues to decrease from 22.2% in 2002 to 18.8% in 2010 [1]. These trends are mirrored by declines between 20% and 30% in the proportions of high school students enrolled in science or maths. These trends are not unique to Australia but their impact is of concern throughout the policy-making community. To redress these demographic trends, QUT embarked upon a long-term investment strategy to integrate education and research into the physical and virtual infrastructure of the campus, recognising that expectations of students change as rapidly as technology and learning practices change. To implement this strategy, physical infrastructure refurbishment/re-building is accompanied by upgraded technologies not only for learning but also for research. QUT’s vision for its city-based campuses is to create vibrant and attractive places to learn and research and to link strongly to the wider surrounding community. Over a five year period, physical infrastructure at the Gardens Point campus was substantially reconfigured in two key stages: (a) a >$50m refurbishment of heritage-listed buildings to encompass public, retail and social spaces, learning and teaching “test beds” and research laboratories and (b) destruction of five buildings to be replaced by a $230m, >40,000m2 Science and Engineering Centre designed to accommodate retail, recreation, services, education and research in an integrated, coordinated precinct. This landmark project is characterised by (i) self-evident, collaborative spaces for learning, research and social engagement, (ii) sustainable building practices and sustainable ongoing operation and; (iii) dynamic and mobile re-configuration of spaces or staffing to meet demand. Innovative spaces allow for transformative, cohort-driven learning and the collaborative use of space to prosecute joint class projects. Research laboratories are aggregated, centralised and “on display” to the public, students and staff. A major visualisation space – the largest multi-touch, multi-user facility constructed to date – is a centrepiece feature that focuses on demonstrating scientific and engineering principles or science oriented scenes at large scale (e.g. the Great Barrier Reef). Content on this visualisation facility is integrated with the regional school curricula and supports an in-house schools program for student and teacher engagement. Researchers are accommodated in a combined open-plan and office floor-space (80% open plan) to encourage interdisciplinary engagement and cross-fertilisation of skills, ideas and projects. This combination of spaces re-invigorates the on-campus experience, extends educational engagement across all ages and rapidly enhances research collaboration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The contemporary default materials for multi-storey buildings – namely concrete and steel – are all significant generators of carbon and the use of timber products provides a technically, economically and environmentally viable alternative. In particular, timber’s sustainability can drive increased use and subsequent evolution of the Blue economy as a new economic model. National research to date, however, indicates a resistance to the uptake of timber technologies in Australia. To investigate this further, a preliminary study involving a convenience sample of 15 experts was conducted to identify the main barriers involved in the use of timber frames in multi-storey buildings. A closed-ended questionnaire survey involving 74 experienced construction industry participants was then undertaken to rate the relative importance of the barriers. The survey confirmed the most significant barriers to be a perceived increase in maintenance costs and fire risk, together with a limited awareness of the emerging timber technologies available. It is expected that the results will benefit government and the timber industry, contributing to environmental improvement by developing strategies to increase the use of timber technologies in multi-storey buildings by countering perceived barriers in the Australian context.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prefabricated housing innovations have the potential to reduce the environmental impact of construction through improvements to efficiency and quality. The current paper presents a number of recommendations for increasing the adoption of prefabrication based on a review of published evidence. The recommendations consider multiple stakeholders including builders and other intermediaries, suppliers, end-users, as well as their interaction with the broader policy context and technical issues

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper addresses the research question, ‘What are the diffusion determinants for green urbanism innovations in Australia?’ This is a significant topic given the global movement towards green urbanism. The study reported here is based on desktop research that provides new insights through (1) synthesis of the latest research findings on green urbanism innovations and (2) interpretation of diffusion issues through our innovation system model. Although innovation determinants have been studied extensively overseas and in Australia, there is presently a gap in the literature when it comes to these determinants for green urbanism in Australia. The current paper fills this gap. Using a conceptual framework drawn from the innovation systems literature, this paper synthesises and interprets the literature to map the current state of green urbanism innovations in Australia and to analyse the drivers for, and obstacles to, their optimal diffusion. The results point to the importance of collaboration between project-based actors in the implementation of green urbanism. Education, training and regulation across the product system is also required to improve the cultural and technical context for implementation. The results are limited by their exploratory nature and future research is planned to quantify barriers to green urbanism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[ES]Este trabajo tiene como objetivo analizar los distintos criterios empleados en el diseño sostenible de viviendas mediante el uso de indicadores. Para lograr un enfoque más práctico, se ha partido del estudio del proyecto de construcción de una vivienda de tipo Passivhaus en Junguitu, localidad próxima a Vitoria-­‐Gasteiz. Dicho proyecto se ha dividido en once puntos: orientación del edificio, compacidad, aislamiento térmico, inercia térmica, puentes térmicos, estanqueidad al aire, sistema de ventilación, sistema de calefacción, ventanas, puerta entrada a vivienda y instalación eléctrica. En cada uno de ellos se han analizado las distintas soluciones de instalaciones y los criterios establecidos para la obtención del sistema que más se ajusta a las necesidades del edificio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Climate Change Act of 2008 the UK Government pledged to reduce carbon emissions by 80% by 2050. As one step towards this, regulations are being introduced requiring all new buildings to be ‘zero carbon’ by 2019. These are defined as buildings which emit net zero carbon during their operational lifetime. However, in order to meet the 80% target it is necessary to reduce the carbon emitted during the whole life-cycle of buildings, including that emitted during the processes of construction. These elements make up the ‘embodied carbon’ of the building. While there are no regulations yet in place to restrict embodied carbon, a number of different approaches have been made. There are several existing databases of embodied carbon and embodied energy. Most provide data for the material extraction and manufacturing only, the ‘cradle to factory gate’ phase. In addition to the databases, various software tools have been developed to calculate embodied energy and carbon of individual buildings. A third source of data comes from the research literature, in which individual life cycle analyses of buildings are reported. This paper provides a comprehensive review, comparing and assessing data sources, boundaries and methodologies. The paper concludes that the wide variations in these aspects produce incomparable results. It highlights the areas where existing data is reliable, and where new data and more precise methods are needed. This comprehensive review will guide the future development of a consistent and transparent database and software tool to calculate the embodied energy and carbon of buildings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the Climate Change Act of 2008 the UK Government pledged to reduce carbon emissions by 80% by 2050. As one step towards this, regulations are being introduced requiring all new buildings to be ‘zero carbon’ by 2019. These are defined as buildingswhichemitnetzerocarbonduringtheiroperationallifetime.However,inordertomeetthe80%targetitisnecessary to reduce the carbon emitted during the whole life-cycle of buildings, including that emitted during the processes of construction. These elements make up the ‘embodied carbon’ of the building. While there are no regulations yet in place to restrictembodiedcarbon,anumberofdifferentapproacheshavebeenmade.Thereareseveralexistingdatabasesofembodied carbonandembodiedenergy.Mostprovidedataforthematerialextractionandmanufacturingonly,the‘cradletofactorygate’ phase. In addition to the databases, various software tools have been developed to calculate embodied energy and carbon of individual buildings. A third source of data comes from the research literature, in which individual life cycle analyses of buildings are reported. This paper provides a comprehensive review, comparing and assessing data sources, boundaries and methodologies. The paper concludes that the wide variations in these aspects produce incomparable results. It highlights the areas where existing data is reliable, and where new data and more precise methods are needed. This comprehensive review will guide the future development of a consistent and transparent database and software tool to calculate the embodied energy and carbon of buildings.