995 resultados para surface alterations
Resumo:
The Ca(2+)-binding proteins parvalbumin (PV) and calbindin D-28k (CB) are key players in the intracellular Ca(2+)-buffering in specific cells including neurons and have profound effects on spatiotemporal aspects of Ca(2+) transients. The previously observed increase in mitochondrial volume density in fast-twitch muscle of PV-/- mice is viewed as a specific compensation mechanism to maintain Ca(2+) homeostasis. Since cerebellar Purkinje cells (PC) are characterized by high expression levels of the Ca(2+) buffers PV and CB, the question was raised, whether homeostatic mechanisms are induced in PC lacking these buffers. Mitochondrial volume density, i.e. relative mitochondrial mass was increased by 40% in the soma of PV-/- PC. Upregulation of mitochondrial volume density was not homogenous throughout the soma, but was selectively restricted to a peripheral region of 1.5 microm width underneath the plasma membrane. Accompanied was a decreased surface of subplasmalemmal smooth endoplasmic reticulum (sPL-sER) in a shell of 0.5 microm thickness underneath the plasma membrane. These alterations were specific for the absence of the "slow-onset" buffer PV, since in CB-/- mice neither changes in peripheral mitochondria nor in sPL-sER were observed. This implicates that the morphological alterations are aimed to specifically substitute the function of the slow buffer PV. We propose a novel concept that homeostatic mechanisms of components involved in Ca(2+) homeostasis do not always occur at the level of similar or closely related molecules. Rather the cell attempts to restore spatiotemporal aspects of Ca(2+) signals prevailing in the undisturbed (wildtype) situation by subtly fine tuning existing components involved in the regulation of Ca(2+) fluxes.
Resumo:
BACKGROUND: Repeated bronchoalveolar lavage (BAL) has been used in animals to induce surfactant depletion and to study therapeutical interventions of subsequent respiratory insufficiency. Intratracheal administration of surface active agents such as perfluorocarbons (PFC) can prevent the alveolar collapse in surfactant depleted lungs. However, it is not known how BAL or subsequent PFC administration affect the intracellular and intraalveolar surfactant pool. METHODS: Male wistar rats were surfactant depleted by BAL and treated for 1 hour by conventional mechanical ventilation (Lavaged-Gas, n = 5) or partial liquid ventilation with PF 5080 (Lavaged-PF5080, n = 5). For control, 10 healthy animals with gas (Healthy-Gas, n = 5) or PF5080 filled lungs (Healthy-PF5080, n = 5) were studied. A design-based stereological approach was used for quantification of lung parenchyma and the intracellular and intraalveolar surfactant pool at the light and electron microscopic level. RESULTS: Compared to Healthy-lungs, Lavaged-animals had more type II cells with lamellar bodies in the process of secretion and freshly secreted lamellar body-like surfactant forms in the alveoli. The fraction of alveolar epithelial surface area covered with surfactant and total intraalveolar surfactant content were significantly smaller in Lavaged-animals. Compared with Gas-filled lungs, both PF5080-groups had a significantly higher total lung volume, but no other differences. CONCLUSION: After BAL-induced alveolar surfactant depletion the amount of intracellularly stored surfactant is about half as high as in healthy animals. In lavaged animals short time liquid ventilation with PF5080 did not alter intra- or extracellular surfactant content or subtype composition.
Resumo:
AIM: To assess dimensional ridge alterations following immediate implant placement in molar extraction sites. MATERIAL AND METHODS: Twelve subjects received 12 immediate transmucosal implants in molar extraction sites. Peri-implant defects were treated according to the principles of Guided Bone Regeneration by means of a deproteinized bone substitute and a bioresorbable collagen membrane. Changes in vertical (IS-BD, CREST-BD) and horizontal distances (EC-I, IC-I) of alveolar bony walls to the bottom of the defects (BD) and to the implant surfaces (I) were compared between implant placement and surgical re-entry at 6 months. RESULTS: The implant survival rate at 6 months was 100%. Statistically significant differences (P<0.01) were observed in the mean changes in vertical distances IS-BD and CREST-BD between baseline and re-entry. At re-entry, all peri-implant marginal defects assessed from the internal socket wall to the implant surface (IC-I) were healed. The residual combined thickness of the buccal wall with the newly formed peri-implant bone at sites with an initial thickness of 1 mm was statistically significantly smaller (P<0.05) compared with that of sites with an initial buccal thickness of 2 mm (2.50 +/- 0.76 vs. 4+/-0 mm). CONCLUSIONS: The marginal defects around immediate implants placed in molar extraction sites were completely filled after 6 months of healing through de novo bone formation. Bone resorption was observed from the external aspects of the buccal and oral socket walls. Dimensional changes of the external socket walls were mostly pronounced at the buccal aspects.
Resumo:
BACKGROUND Nebulized surfactant therapy has been proposed as an alternative method of surfactant administration. The use of a perforated vibrating membrane nebulizer provides a variety of advantages over conventional nebulizers. We investigated the molecular structure and integrity of poractant alfa pre- and post-nebulization. METHOD Curosurf® was nebulized using an Investigational eFlow® Nebulizer System. Non-nebulized surfactant ("NN"), recollected surfactant droplets from nebulization through an endotracheal tube ("NT") and nebulization of surfactant directly onto a surface ("ND") were investigated by transmission electron microscopy. Biophysical characteristics were assessed by the Langmuir-Wilhelmy balance and the Captive Bubble Surfactometer. RESULTS Volume densities of lamellar body-like forms (LBL) and multi-lamellar forms (ML) were high for "NN" and "NT" samples (38.8% vs. 47.7% for LBL and 58.2% vs. 47.8% for ML). In the "ND" sample, we found virtually no LBL's, ML's (72.6%) as well as uni-lamellar forms (16.4%) and a new structure, the "garland-like" forms (9.4%). Surface tension for "NN" and "NT" was 23.33 ± 0.29 and 25.77 ± 1.12 mN/m, respectively. Dynamic compression-expansion cycling minimum surface tensions were between 0.91 and 1.77 mN/m. CONCLUSION The similarity of surfactant characteristics of nebulized surfactant via a tube and the non-nebulized surfactant suggests that vibrating membrane nebulizers are suitable for surfactant nebulization. Alterations in surfactant morphology and characteristics after nebulization were transient. A new structural subtype of surfactant was identified. Pediatr Pulmonol. 2014; 49:348-356. © 2013 Wiley Periodicals, Inc.
Resumo:
AIMS As 4-day-old mice of the severe spinal muscular atrophy (SMA) model (dying at 5-8 days) display pronounced neuromuscular changes in the diaphragm but not the soleus muscle, we wanted to gain more insight into the relationship between muscle development and the emergence of pathological changes and additionally to analyse intercostal muscles which are affected in human SMA. METHODS Structures of muscle fibres and neuromuscular junctions (NMJs) of the diaphragm, intercostal and calf muscles of prenatal (E21) and postnatal (P0 and P4) healthy and SMA mice were analysed by light and transmission electron microscopy. NMJ innervation was studied by whole mount immunofluorescence in diaphragms of P4 mice. RESULTS During this period, the investigated muscles still show a significant neck-to-tail developmental gradient. The diaphragm and calf muscles are most and least advanced, respectively, with respect to muscle fibre fusion and differentiation. The number and depth of subsynaptic folds increases, and perisynaptic Schwann cells (PSCs) acquire a basal lamina on their outer surface. Subsynaptic folds are connected to an extensive network of tubules and beaded caveolae, reminiscent of the T system in adult muscle. Interestingly, intercostal muscles from P4 SMA mice show weaker pathological involvement (that is, vacuolization of PSCs and perineurial cells) than those previously described by us for the diaphragm, whereas calf muscles show no pathological changes. CONCLUSION SMA-related alterations appear to occur only when the muscles have reached a certain developmental maturity. Moreover, glial cells, in particular PSCs, play an important role in SMA pathogenesis.
Resumo:
Purpose.This retrospective cohort study evaluated factors for peri-implant bone level changes (ΔIBL) associated with an implant type with inner-cone implant-abutment connection, rough neck surface, and platform switching (AT). Materials and Methods. All AT placed at the Department of Prosthodontics of the University of Bern between January 2004 and December 2005 were included in this study. All implants were examined by single radiographs using the parallel technique taken at surgery (T0) and obtained at least 6 months after surgery (T1). Possible influencing factors were analysed first using t-test (normal distribution) or the nonparametric Wilcoxon test (not normal distribution), and then a mixed model q variance analysis was performed. Results. 43 patients were treated with 109 implants. Five implants in 2 patients failed (survival rate: 95.4%).Mean ΔIBL in group 1 (T1: 6–12 months after surgery) was −0.65 ± 0.82mm and −0.69 ± 0.82mm in group 2 (T1: >12 months after surgery) (
Resumo:
Dimensional alterations of the facial soft and bone tissues following tooth extraction in the esthetic zone play an essential role to achieve successful outcomes in implant therapy. This prospective study is the first to investigate the interplay between the soft tissue dimensions and the underlying bone anatomy during an 8-wk healing period. The analysis is based on sequential 3-dimensional digital surface model superimpositions of the soft and bone tissues using digital impressions and cone beam computed tomography during an 8-wk healing period. Soft tissue thickness in thin and thick bone phenotypes at extraction was similar, averaging 0.7 mm and 0.8 mm, respectively. Interestingly, thin bone phenotypes revealed a 7-fold increase in soft tissue thickness after an 8-wk healing period, whereas in thick bone phenotypes, the soft tissue dimensions remained unchanged. The observed spontaneous soft tissue thickening in thin bone phenotypes resulted in a vertical soft tissue loss of only 1.6 mm, which concealed the underlying vertical bone resorption of 7.5 mm. Because of spontaneous soft tissue thickening, no significant differences were detected in the total tissue loss between thin and thick bone phenotypes at 2, 4, 6, and 8 wk. More than 51% of these dimensional alterations occurred within 2 wk of healing. Even though the observed spontaneous soft tissue thickening in thin bone phenotypes following tooth extraction conceals the pronounced underlying bone resorption pattern by masking the true bone deficiency, spontaneous soft tissue thickening offers advantages for subsequent bone regeneration and implant therapies in sites with high esthetic demand (Clinicaltrials.gov NCT02403700).
Resumo:
We have combined high-resolution atomic force microscopy (AFM) imaging and force spectroscopy to gain insight into the interaction forces between the individual protomers of the hexagonally packed intermediate (HPI) layer of Deinococcus radiodurans. After imaging the HPI layer, the AFM stylus was attached to individual protomers by enforced stylus-sample contact to allow force spectroscopy experiments. Imaging of the HPI layer after recording force-extension curves allowed adhesion forces to be correlated with structural alterations. By using this approach, individual protomers of the HPI layer were found to be removed at pulling forces of ≈300 pN. Furthermore, it was possible to sequentially unzip entire bacterial pores formed by six HPI protomers. The combination of high-resolution AFM imaging of individual proteins with the determination of their intramolecular forces is a method of studying the mechanical stability of supramolecular structures at the level of single molecules.
Resumo:
Tissue factor (TF) is the cellular receptor for an activated form of clotting factor VII (VIIa) and the binding of factor VII(a) to TF initiates the coagulation cascade. Sequence and structural patterns extracted from a global alignment of TF confers homology with interferon receptors of the cytokine receptor super family. Several recent studies suggested that TF could function as a genuine signal transducing receptor. However, it is unknown which biological function(s) of cells are altered upon the ligand, VIIa, binding to TF. In the present study, we examined the effect of VIIa binding to cell surface TF on cellular gene expression in fibroblasts. Differential mRNA display PCR technique was used to identify transcriptional changes in fibroblasts upon VIIa binding to TF. The display showed that VIIa binding to TF either up or down-regulated several mRNA species. The differential expression of one such transcript, VIIa-induced up-regulation, was confirmed by Northern blot analysis. Isolation of a full-length cDNA corresponding to the differentially expressed transcript revealed that VIIa-up-regulated gene was poly(A) polymerase. Northern blot analysis of various carcinomas and normal human tissues revealed an over expression of PAP in cancer tissues. Enhanced expression of PAP upon VIIa binding to tumor cell TF may potentially play an important role in tumor metastasis.
Resumo:
Between 2001 and 2005, seven category 3 or higher major hurricanes made landfall within the US. The hydrologic impacts of these distinct climatic phenomena frequently occurring in wetland watersheds, however, are not well understood. The focus of this study was to evaluate the impacts of hurricane wind and rainfall conditions on water velocity and water elevations within the study wetland, the Florida Everglades. Specifically water velocity data was measured near two tree islands (Gumbo Limbo (GL) and Satin Leaf (SL)) and wind speed, water elevation, and rainfall were obtained from nearby wind observation stations. During the direct impacts of the hurricanes (Hurricanes Katrina and Wilma), water speed, flow direction, and hydraulic gradients were altered, and the extent of variation was positively related to wind characteristics, with significant alterations in flow direction at depth during Hurricane Wilma due to higher wind speeds. After the direct impacts, the longer lasting effect of hurricanes (time scale of a few days) resulted in altered flow speeds that changed by 50% or less. These longer lasting changes in flow speeds may be due to the redistribution of emergent vegetation.