816 resultados para step utility
Resumo:
Introduction: The ability to regulate joint stiffness and coordinate movement during landing when impaired by muscle fatigue has important implications for knee function. Unfortunately, the literature examining fatigue effects on landing mechanics suffers from a lack of consensus. Inconsistent results can be attributed to variable fatigue models, as well as grouping variable responses between individuals when statistically detecting differences between conditions. There remains a need to examine fatigue effects on knee function during landing with attention to these methodological limitations. Aim: The purpose of this study therefore, was to examine the effects of isokinetic fatigue on pre-impact muscle activity and post-impact knee mechanics during landing using singlesubject analysis. Methodology: Sixteen male university students (22.6+3.2 yrs; 1.78+0.07 m; 75.7+6.3 kg) performed maximal concentric and eccentric knee extensions in a reciprocal manner on an isokinetic dynamometer and step-landing trials on 2 occasions. On the first occasion each participant performed 20 step-landing trials from a knee-high platform followed by 75 maximal contractions on the isokinetic dynamometer. The isokinetic data was used to calculate the operational definition of fatigue. On the second occasion, with a minimum rest of 14 days, participants performed 2 sets of 20 step landing trials, followed by isokinetic exercise until the operational definition of fatigue was met and a final post-fatigue set of 20 step-landing trials. Results: Single-subject analyses revealed that isokinetic fatigue of the quadriceps induced variable responses in pre impact activation of knee extensors and flexors (frequency, onset timing and amplitude) and post-impact knee mechanics(stiffness and coordination). In general however, isokinetic fatigue induced sig nificant (p<0.05) reductions in quadriceps activation frequency, delayed onset and increased amplitude. In addition, knee stiffness was significantly (p<0.05) increased in some individuals, as well as impaired sagittal coordination. Conclusions: Pre impact activation and post-impact mechanics were adjusted in patterns that were unique to the individual, which could not be identified using traditional group-based statistical analysis. The results suggested that individuals optimised knee function differently to satisfy competing demands, such as minimising energy expenditure, as well as maximising joint stability and sensory information.
Resumo:
Introduction: Evidence concerning the alteration of knee function during landing suffers from a lack of consensus. This uncertainty can be attributed to methodological flaws, particularly in relation to the statistical analysis of variable human movement data. Aim: The aim of this study was to compare single-subject and group analysis in quantifying alterations in the magnitude and within-participant variability of knee mechanics during a step landing task. Methods: A group of healthy men (N = 12) stepped-down from a knee-high platform for 60 consecutive trials, each trial separated by a 1-minute rest. The magnitude and within-participant variability of sagittal knee stiffness and coordination of the landing leg during the immediate postimpact period were evaluated. Coordination of the knee was quantified in the sagittal plane by calculating the mean absolute relative phase of sagittal shank and thigh motion (MARP1) and between knee rotation and knee flexion (MARP2). Changes across trials were compared between both group and single-subject statistical analyses. Results: The group analysis detected significant reductions in MARP1 magnitude. However, the single-subject analyses detected changes in all dependent variables, which included increases in variability with task repetition. Between-individual variation was also present in the timing, size and direction of alterations to task repetition. Conclusion: The results have important implications for the interpretation of existing information regarding the adaptation of knee mechanics to interventions such as fatigue, footwear or landing height. It is proposed that a familiarisation session be incorporated in future experiments on a single-subject basis prior to an intervention.
Resumo:
Quality oriented management systems and methods have become the dominant business and governance paradigm. From this perspective, satisfying customers’ expectations by supplying reliable, good quality products and services is the key factor for an organization and even government. During recent decades, Statistical Quality Control (SQC) methods have been developed as the technical core of quality management and continuous improvement philosophy and now are being applied widely to improve the quality of products and services in industrial and business sectors. Recently SQC tools, in particular quality control charts, have been used in healthcare surveillance. In some cases, these tools have been modified and developed to better suit the health sector characteristics and needs. It seems that some of the work in the healthcare area has evolved independently of the development of industrial statistical process control methods. Therefore analysing and comparing paradigms and the characteristics of quality control charts and techniques across the different sectors presents some opportunities for transferring knowledge and future development in each sectors. Meanwhile considering capabilities of Bayesian approach particularly Bayesian hierarchical models and computational techniques in which all uncertainty are expressed as a structure of probability, facilitates decision making and cost-effectiveness analyses. Therefore, this research investigates the use of quality improvement cycle in a health vii setting using clinical data from a hospital. The need of clinical data for monitoring purposes is investigated in two aspects. A framework and appropriate tools from the industrial context are proposed and applied to evaluate and improve data quality in available datasets and data flow; then a data capturing algorithm using Bayesian decision making methods is developed to determine economical sample size for statistical analyses within the quality improvement cycle. Following ensuring clinical data quality, some characteristics of control charts in the health context including the necessity of monitoring attribute data and correlated quality characteristics are considered. To this end, multivariate control charts from an industrial context are adapted to monitor radiation delivered to patients undergoing diagnostic coronary angiogram and various risk-adjusted control charts are constructed and investigated in monitoring binary outcomes of clinical interventions as well as postintervention survival time. Meanwhile, adoption of a Bayesian approach is proposed as a new framework in estimation of change point following control chart’s signal. This estimate aims to facilitate root causes efforts in quality improvement cycle since it cuts the search for the potential causes of detected changes to a tighter time-frame prior to the signal. This approach enables us to obtain highly informative estimates for change point parameters since probability distribution based results are obtained. Using Bayesian hierarchical models and Markov chain Monte Carlo computational methods, Bayesian estimators of the time and the magnitude of various change scenarios including step change, linear trend and multiple change in a Poisson process are developed and investigated. The benefits of change point investigation is revisited and promoted in monitoring hospital outcomes where the developed Bayesian estimator reports the true time of the shifts, compared to priori known causes, detected by control charts in monitoring rate of excess usage of blood products and major adverse events during and after cardiac surgery in a local hospital. The development of the Bayesian change point estimators are then followed in a healthcare surveillances for processes in which pre-intervention characteristics of patients are viii affecting the outcomes. In this setting, at first, the Bayesian estimator is extended to capture the patient mix, covariates, through risk models underlying risk-adjusted control charts. Variations of the estimator are developed to estimate the true time of step changes and linear trends in odds ratio of intensive care unit outcomes in a local hospital. Secondly, the Bayesian estimator is extended to identify the time of a shift in mean survival time after a clinical intervention which is being monitored by riskadjusted survival time control charts. In this context, the survival time after a clinical intervention is also affected by patient mix and the survival function is constructed using survival prediction model. The simulation study undertaken in each research component and obtained results highly recommend the developed Bayesian estimators as a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances as well as industrial and business contexts. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The empirical results and simulations indicate that the Bayesian estimators are a strong alternative in change point estimation within quality improvement cycle in healthcare surveillances. The superiority of the proposed Bayesian framework and estimators are enhanced when probability quantification, flexibility and generalizability of the developed model are also considered. The advantages of the Bayesian approach seen in general context of quality control may also be extended in the industrial and business domains where quality monitoring was initially developed.
Resumo:
This short article summarises some of the proposed reforms to surrogacy laws in Queensland, suggested by the Liberal National Party in 2012. The paper outlines some of the main objections that could be voiced in response to the proposed changes to the law.
Resumo:
Background: For those in the field of managing diabetic complications, the accurate diagnosis and monitoring of diabetic peripheral neuropathy (DPN) continues to be a challenge. Assessment of sub-basal corneal nerve morphology has recently shown promise as a novel ophthalmic marker for the detection of DPN. Methods: Two hundred and thirty-one individuals with diabetes with predominantly mild or no neuropathy and 61 controls underwent evaluation of diabetic neuropathy symptom score, neuropathy disability score, testing with 10 g monofilament, quantitative sensory testing (warm, cold, vibration detection) and nerve conduction studies. Corneal nerve fibre length, branch density and tortuosity were measured using corneal confocal microscopy. Differences in corneal nerve morphology between individuals with and without DPN and controls were investigated using analysis of variance and correlations were determined between corneal morphology and established tests of, and risk factors for, DPN. Results: Corneal nerve fibre length was significantly reduced in diabetic individuals with mild DPN compared with both controls (p < 0.001) and diabetic individuals without DPN (p = 0.012). Corneal nerve branch density was significantly reduced in individuals with mild DPN compared with controls (p = 0.032). Corneal nerve fibre tortuosity did not show significant differences. Corneal nerve fibre length and corneal nerve branch density showed modest correlations to most measures of neuropathy, with the strongest correlations to nerve conduction study parameters (r = 0.15 to 0.25). Corneal nerve fibre tortuosity showed only a weak correlation to the vibration detection threshold. Corneal nerve fibre length was inversely correlated to glycated haemoglobin (r = -0.24) and duration of diabetes (r = -0.20). Conclusion: Assessment of corneal nerve morphology is a non-invasive, rapid test capable of showing differences between individuals with and without DPN. Corneal nerve fibre length shows the strongest associations with other diagnostic tests of neuropathy and with established risk factors for neuropathy.
Resumo:
3D models of long bones are being utilised for a number of fields including orthopaedic implant design. Accurate reconstruction of 3D models is of utmost importance to design accurate implants to allow achieving a good alignment between two bone fragments. Thus for this purpose, CT scanners are employed to acquire accurate bone data exposing an individual to a high amount of ionising radiation. Magnetic resonance imaging (MRI) has been shown to be a potential alternative to computed tomography (CT) for scanning of volunteers for 3D reconstruction of long bones, essentially avoiding the high radiation dose from CT. In MRI imaging of long bones, the artefacts due to random movements of the skeletal system create challenges for researchers as they generate inaccuracies in the 3D models generated by using data sets containing such artefacts. One of the defects that have been observed during an initial study is the lateral shift artefact occurring in the reconstructed 3D models. This artefact is believed to result from volunteers moving the leg during two successive scanning stages (the lower limb has to be scanned in at least five stages due to the limited scanning length of the scanner). As this artefact creates inaccuracies in the implants designed using these models, it needs to be corrected before the application of 3D models to implant design. Therefore, this study aimed to correct the lateral shift artefact using 3D modelling techniques. The femora of five ovine hind limbs were scanned with a 3T MRI scanner using a 3D vibe based protocol. The scanning was conducted in two halves, while maintaining a good overlap between them. A lateral shift was generated by moving the limb several millimetres between two scanning stages. The 3D models were reconstructed using a multi threshold segmentation method. The correction of the artefact was achieved by aligning the two halves using the robust iterative closest point (ICP) algorithm, with the help of the overlapping region between the two. The models with the corrected artefact were compared with the reference model generated by CT scanning of the same sample. The results indicate that the correction of the artefact was achieved with an average deviation of 0.32 ± 0.02 mm between the corrected model and the reference model. In comparison, the model obtained from a single MRI scan generated an average error of 0.25 ± 0.02 mm when compared with the reference model. An average deviation of 0.34 ± 0.04 mm was seen when the models generated after the table was moved were compared to the reference models; thus, the movement of the table is also a contributing factor to the motion artefacts.
Resumo:
The standard approach to tax compliance applies the economics-of-crime methodology pioneered by Becker (1968): in its first application, due to Allingham and Sandmo (1972) it models the behaviour of agents as a decision involving a choice of the extent of their income to report to tax authorities, given a certain institutional environment, represented by parameters such as the probability of detection and penalties in the event the agent is caught. While this basic framework yields important insights on tax compliance behavior, it has some critical limitations. Specifically, it indicates a level of compliance that is significantly below what is observed in the data. This thesis revisits the original framework with a view towards addressing this issue, and examining the political economy implications of tax evasion for progressivity in the tax structure. The approach followed involves building a macroeconomic, dynamic equilibrium model for the purpose of examining these issues, by using a step-wise model building procedure starting with some very simple variations of the basic Allingham and Sandmo construct, which are eventually integrated to a dynamic general equilibrium overlapping generations framework with heterogeneous agents. One of the variations involves incorporating the Allingham and Sandmo construct into a two-period model of a small open economy of the type originally attributed to Fisher (1930). A further variation of this simple construct involves allowing agents to initially decide whether to evade taxes or not. In the event they decide to evade, the agents then have to decide the extent of income or wealth they wish to under-report. We find that the ‘evade or not’ assumption has strikingly different and more realistic implications for the extent of evasion, and demonstrate that it is a more appropriate modeling strategy in the context of macroeconomic models, which are essentially dynamic in nature, and involve consumption smoothing across time and across various states of nature. Specifically, since deciding to undertake tax evasion impacts on the consumption smoothing ability of the agent by creating two states of nature in which the agent is ‘caught’ or ‘not caught’, there is a possibility that their utility under certainty, when they choose not to evade, is higher than the expected utility obtained when they choose to evade. Furthermore, the simple two-period model incorporating an ‘evade or not’ choice can be used to demonstrate some strikingly different political economy implications relative to its Allingham and Sandmo counterpart. In variations of the two models that allow for voting on the tax parameter, we find that agents typically choose to vote for a high degree of progressivity by choosing the highest available tax rate from the menu of choices available to them. There is, however, a small range of inequality levels for which agents in the ‘evade or not’ model vote for a relatively low value of the tax rate. The final steps in the model building procedure involve grafting the two-period models with a political economy choice into a dynamic overlapping generations setting with more general, non-linear tax schedules and a ‘cost-of evasion’ function that is increasing in the extent of evasion. Results based on numerical simulations of these models show further improvement in the model’s ability to match empirically plausible levels of tax evasion. In addition, the differences between the political economy implications of the ‘evade or not’ version of the model and its Allingham and Sandmo counterpart are now very striking; there is now a large range of values of the inequality parameter for which agents in the ‘evade or not’ model vote for a low degree of progressivity. This is because, in the ‘evade or not’ version of the model, low values of the tax rate encourages a large number of agents to choose the ‘not-evade’ option, so that the redistributive mechanism is more ‘efficient’ relative to the situations in which tax rates are high. Some further implications of the models of this thesis relate to whether variations in the level of inequality, and parameters such as the probability of detection and penalties for tax evasion matter for the political economy results. We find that (i) the political economy outcomes for the tax rate are quite insensitive to changes in inequality, and (ii) the voting outcomes change in non-monotonic ways in response to changes in the probability of detection and penalty rates. Specifically, the model suggests that changes in inequality should not matter, although the political outcome for the tax rate for a given level of inequality is conditional on whether there is a large or small or large extent of evasion in the economy. We conclude that further theoretical research into macroeconomic models of tax evasion is required to identify the structural relationships underpinning the link between inequality and redistribution in the presence of tax evasion. The models of this thesis provide a necessary first step in that direction.
Resumo:
Objectives: To evaluate the clinical value of pre-operative serum CA125 in predicting the presence of extra-uterine disease in patients with apparent early stage endometrial cancer. Methods: Between October 6, 2005 and June 17, 2010, 760 patients were enrolled in an international, multicentre, prospective randomized trial (LACE) comparing laparotomy with laparoscopy in the management of endometrial cancer apparently confined to the uterus. This study is based on data from 657 patients with endometrial adenocarcinoma who had a pre-operative serum CA125 value, and was undertaken to correlate pre-operative serum CA125 with final stage. Results: Using a pre-operative CA-125 cutpoint of 30U/ml was associated with the smallest misclassification error (14.5%) using a multiple cross-validation method. Median pre-operative serum CA-125 was 14U/ml, and using a cutpoint of 30U/ml, 14.9% of patients had elevated CA-125 levels. Of 98 patients with elevated CA-125 level, 36 (36.7%) had evidence of extra-uterine disease. Of the 116 patients (17.7%) with evidence of extra-uterine disease, 31.0% had elevated CA-125 level. In univariate and multivariate logistic regression analysis, only pre-operative CA-125 level was found to be associated with extra-uterine spread of disease. Utilising a cutpoint of 30U/ml achieved a sensitivity, specificity, positive predictive value and negative predictive value of 31.0%, 88.5%, 36.7% and 85.7% respectively. Overall, 326/657 (49.6%) of patients had full surgical staging involving lymph node dissection. When analysis was limited to patients that had undergone full surgical staging, the outcomes remained essentially unchanged. Conclusions: Elevated CA-125 above 30U/ml in patients with apparent early stage disease is associated with a sensitivity of 31.0% and specificity of 88.5% in detecting extra-uterine disease. Pre-operative identification of this risk factor may assist to triage patients to tertiary centres and comprehensive surgical staging.
Resumo:
EHealth systems promise enviable benefits and capabilities for healthcare. But, the technologies that make these capabilities possible brings with them undesirable drawback such as information security related threats which need to be appropriately addressed. Lurking in these threats are patient privacy concerns. Fulfilling these privacy concerns have proven to be difficult since they often conflict with information requirements of care providers. It is important to achieve a proper balance between these requirements. We believe that information accountability can achieve this balance. In this paper we introduce accountable-eHealth systems. We will discuss how our designed protocols can successfully address the aforementioned requirement. We will also compare characteristics of AeH systems with Australia’s PCEHR system and identify similarities and highlight the differences and the impact those differences would have to the eHealth domain.
Resumo:
Circulating tumour cells (CTCs) have attracted much recent interest in cancer research as a potential biomarker and as a means of studying the process of metastasis. It has long been understood that metastasis is a hallmark of malignancy, and conceptual theories on the basis of metastasis from the nineteenth century foretold the existence of a tumour "seed" which is capable of establishing discrete tumours in the "soil" of distant organs. This prescient "seed and soil" hypothesis accurately predicted the existence of CTCs; microscopic tumour fragments in the blood, at least some of which are capable of forming metastases. However, it is only in recent years that reliable, reproducible methods of CTC detection and analysis have been developed. To date, the majority of studies have employed the CellSearch™ system (Veridex LLC), which is an immunomagnetic purification method. Other promising techniques include microfluidic filters, isolation of tumour cells by size using microporous polycarbonate filters and flow cytometry-based approaches. While many challenges still exist, the detection of CTCs in blood is becoming increasingly feasible, giving rise to some tantalizing questions about the use of CTCs as a potential biomarker. CTC enumeration has been used to guide prognosis in patients with metastatic disease, and to act as a surrogate marker for disease response during therapy. Other possible uses for CTC detection include prognostication in early stage patients, identifying patients requiring adjuvant therapy, or in surveillance, for the detection of relapsing disease. Another exciting possible use for CTC detection assays is the molecular and genetic characterization of CTCs to act as a "liquid biopsy" representative of the primary tumour. Indeed it has already been demonstrated that it is possible to detect HER2, KRAS and EGFR mutation status in breast, colon and lung cancer CTCs respectively. In the course of this review, we shall discuss the biology of CTCs and their role in metastagenesis, the most commonly used techniques for their detection and the evidence to date of their clinical utility, with particular reference to lung cancer.
Resumo:
Brief self-report symptom checklists are often used to screen for postconcussional disorder (PCD) and posttraumatic stress disorder (PTSD) and are highly susceptible to symptom exaggeration. This study examined the utility of the five-item Mild Brain Injury Atypical Symptoms Scale (mBIAS) designed for use with the Neurobehavioral Symptom Inventory (NSI) and the PTSD Checklist–Civilian (PCL–C). Participants were 85 Australian undergraduate students who completed a battery of self-report measures under one of three experimental conditions: control (i.e., honest responding, n = 24), feign PCD (n = 29), and feign PTSD (n = 32). Measures were the mBIAS, NSI, PCL–C, Minnesota Multiphasic Personality Inventory–2, Restructured Form (MMPI–2–RF), and the Structured Inventory of Malingered Symptomatology (SIMS). Participants instructed to feign PTSD and PCD had significantly higher scores on the mBIAS, NSI, PCL–C, and MMPI–2–RF than did controls. Few differences were found between the feign PCD and feign PTSD groups, with the exception of scores on the NSI (feign PCD > feign PTSD) and PCL–C (feign PTSD > feign PCD). Optimal cutoff scores on the mBIAS of ≥8 and ≥6 were found to reflect “probable exaggeration” (sensitivity = .34; specificity = 1.0; positive predictive power, PPP = 1.0; negative predictive power, NPP = .74) and “possible exaggeration” (sensitivity = .72; specificity = .88; PPP = .76; NPP = .85), respectively. Findings provide preliminary support for the use of the mBIAS as a tool to detect symptom exaggeration when administering the NSI and PCL–C.
Resumo:
In the 20 years since its inception, the EPPM has attracted much empirical support. Currently, and unsurprisingly given that is a model of fear-based persuasion, the EPPM’s explanatory utility has been based only upon fear-based messages. However, an argument is put forth herein, which draws upon existing evidence, that the EPPM may be an efficacious framework for explaining the persuasive process and outcomes of emotion-based messages more broadly when such messages are addressing serious health topics. For the current study, four different types of emotional appeals were purposefully devised and included a fear, an annoyance/agitation, a pride, and a humour-based message. All messages addressed the serious health issue of road safety, and in particular the risky behaviour of speeding. Participants (N = 551) were exposed to only one of the four messages and subsequently provided responses within a survey. A series of 2 (threat: low, high) x 2 (efficacy: low, high) analysis of variance was conducted for each of the appeals based on the EPPM’s message outcomes of acceptance and rejection. Support was found for the EPPM with a number of main effects of threat and efficacy emerging, reflecting that, irrespective of emotional appeal type, high levels of threat and efficacy enhanced message outcomes via maximising acceptance and minimising rejection. Theoretically, the findings provide support for the explanatory utility of the EPPM for emotion-based health messages more broadly. In an applied sense, the findings highlight the value of adopting the EPPM as a framework when devising and evaluating emotion-based health messages for serious health topics.
Resumo:
Background: Bicycle commuting in an urban environment of high air pollution is known as a potential health risk, especially for susceptible individuals. While risk management strategies aimed to reduce motorised traffic emissions exposure have been suggested, limited studies have assessed the utility of such strategies in real-world circumstances. Objectives: The potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering interaction with motorised traffic was investigated with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. Methods: Thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) each completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower interaction with motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. Results: LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. Conclusions: Exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering interaction with motorised traffic whilst bicycle commuting, which may bring important benefits for both healthy and susceptible individuals.
Resumo:
Several approaches have been introduced in literature for active noise control (ANC) systems. Since FxLMS algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANC applications an online secondary path modelling method using a white noise as a training signal is required to ensure convergence of the system. This paper also proposes a new approach for online secondary path modelling in feedfoward ANC systems. The proposed algorithm stops injection of the white noise at the optimum point and reactivate the injection during the operation, if needed, to maintain performance of the system. Benefiting new version of FxLMS algorithm and not continually injection of white noise makes the system more desirable and improves the noise attenuation performance. Comparative simulation results indicate effectiveness of the proposed approach.
Resumo:
Bicycle commuting has the potential to be an effective contributing solution to address some of modern society’s biggest issues, including cardiovascular disease, anthropogenic climate change and urban traffic congestion. However, individuals shifting from a passive to an active commute mode may be increasing their potential for air pollution exposure and the associated health risk. This project, consisting of three studies, was designed to investigate the health effects of bicycle commuters in relation to air pollution exposure, in a major city in Australia (Brisbane). The aims of the three studies were to: 1) examine the relationship of in-commute air pollution exposure perception, symptoms and risk management; 2) assess the efficacy of commute re-routing as a risk management strategy by determining the exposure potential profile of ultrafine particles along commute route alternatives of low and high proximity to motorised traffic; and, 3) evaluate the feasibility of implementing commute re-routing as a risk management strategy by monitoring ultrafine particle exposure and consequential physiological response from using commute route alternatives based on real-world circumstances; 3) investigate the potential of reducing exposure to ultrafine particles (UFP; < 0.1 µm) during bicycle commuting by lowering proximity to motorised traffic with real-time air pollution and acute inflammatory measurements in healthy individuals using their typical, and an alternative to their typical, bicycle commute route. The methods of the three studies included: 1) a questionnaire-based investigation with regular bicycle commuters in Brisbane, Australia. Participants (n = 153; age = 41 ± 11 yr; 28% female) reported the characteristics of their typical bicycle commute, along with exposure perception and acute respiratory symptoms, and amenability for using a respirator or re-routing their commute as risk management strategies; 2) inhaled particle counts measured along popular pre-identified bicycle commute route alterations of low (LOW) and high (HIGH) motorised traffic to the same inner-city destination at peak commute traffic times. During commute, real-time particle number concentration (PNC; mostly in the UFP range) and particle diameter (PD), heart and respiratory rate, geographical location, and meteorological variables were measured. To determine inhaled particle counts, ventilation rate was calculated from heart-rate-ventilation associations, produced from periodic exercise testing; 3) thirty-five healthy adults (mean ± SD: age = 39 ± 11 yr; 29% female) completed two return trips of their typical route (HIGH) and a pre-determined altered route of lower proximity to motorised traffic (LOW; determined by the proportion of on-road cycle paths). Particle number concentration (PNC) and diameter (PD) were monitored in real-time in-commute. Acute inflammatory indices of respiratory symptom incidence, lung function and spontaneous sputum (for inflammatory cell analyses) were collected immediately pre-commute, and one and three hours post-commute. The main results of the three studies are that: 1) healthy individuals reported a higher incidence of specific acute respiratory symptoms in- and post- (compared to pre-) commute (p < 0.05). The incidence of specific acute respiratory symptoms was significantly higher for participants with respiratory disorder history compared to healthy participants (p < 0.05). The incidence of in-commute offensive odour detection, and the perception of in-commute air pollution exposure, was significantly lower for participants with smoking history compared to healthy participants (p < 0.05). Females reported significantly higher incidence of in-commute air pollution exposure perception and other specific acute respiratory symptoms, and were more amenable to commute re-routing, compared to males (p < 0.05). Healthy individuals have indicated a higher incidence of acute respiratory symptoms in- and post- (compared to pre-) bicycle commuting, with female gender and respiratory disorder history indicating a comparably-higher susceptibility; 2) total mean PNC of LOW (compared to HIGH) was reduced (1.56 x e4 ± 0.38 x e4 versus 3.06 x e4 ± 0.53 x e4 ppcc; p = 0.012). Total estimated ventilation rate did not vary significantly between LOW and HIGH (43 ± 5 versus 46 ± 9 L•min; p = 0.136); however, due to total mean PNC, accumulated inhaled particle counts were 48% lower in LOW, compared to HIGH (7.6 x e8 ± 1.5 x e8 versus 14.6 x e8 ± 1.8 x e8; p = 0.003); 3) LOW resulted in a significant reduction in mean PNC (1.91 x e4 ± 0.93 x e4 ppcc vs. 2.95 x e4 ± 1.50 x e4 ppcc; p ≤ 0.001). Commute distance and duration were not significantly different between LOW and HIGH (12.8 ± 7.1 vs. 12.0 ± 6.9 km and 44 ± 17 vs. 42 ± 17 mins, respectively). Besides incidence of in-commute offensive odour detection (42 vs. 56 %; p = 0.019), incidence of dust and soot observation (33 vs. 47 %; p = 0.038) and nasopharyngeal irritation (31 vs. 41 %; p = 0.007), acute inflammatory indices were not significantly associated to in-commute PNC, nor were these indices reduced with LOW compared to HIGH. The main conclusions of the three studies are that: 1) the perception of air pollution exposure levels and the amenability to adopt exposure risk management strategies where applicable will aid the general population in shifting from passive, motorised transport modes to bicycle commuting; 2) for bicycle commuting at peak morning commute times, inhaled particle counts and therefore cardiopulmonary health risk may be substantially reduced by decreasing exposure to motorised traffic, which should be considered by both bicycle commuters and urban planners; 3) exposure to PNC, and the incidence of offensive odour and nasopharyngeal irritation, can be significantly reduced when utilising a strategy of lowering proximity to motorised traffic whilst bicycle commuting, without significantly increasing commute distance or duration, which may bring important benefits for both healthy and susceptible individuals. In summary, the findings from this project suggests that bicycle commuters can significantly lower their exposure to ultrafine particle emissions by varying their commute route to reduce proximity to motorised traffic and associated combustion emissions without necessarily affecting their time of commute. While the health endpoints assessed with healthy individuals were not indicative of acute health detriment, individuals with pre-disposing physiological-susceptibility may benefit considerably from this risk management strategy – a necessary research focus with the contemporary increased popularity of both promotion and participation in bicycle commuting.