938 resultados para stent thrombosis
Resumo:
Aims: We conducted a pooled post hoc analysis (RESOLUTE All Comers and RESOLUTE International) of patients who had the Resolute® zotarolimus-eluting stent (R-ZES) implanted in revascularised total occlusions (TO) compared with patients treated with R-ZES for non-occluded lesions. Methods and results: Patients were divided into three groups: chronic TO (CTO; n=256), non-chronic TO (n=292), and no occlusion (n=2,941). Clinical and safety outcomes assessed through two years included target lesion failure (TLF: cardiac death, target vessel myocardial infarction, and clinically driven target lesion revascularisation) and Academic Research Consortium definite or probable stent thrombosis. The rate of TLF at two years was not significantly different among patients in the CTO (9.1%), TO (9.8%), and no occlusion (10.4%) groups (log-rank p=0.800); neither were the components of TLF. Definite or probable stent thrombosis occurred more frequently in the TO group (2.8% vs. 1.2% in the CTO and 1.1% in the group with no occlusion, p=0.027). There were 10 late and six very late stent thrombosis events. Conclusions: Apart from a higher rate of stent thrombosis in patients with TO, patients with totally occluded coronary arteries who receive revascularisation with an R-ZES have clinical outcomes comparable to those who receive a similar stent in non-occluded lesions.
Resumo:
OBJECTIVE To investigate the long-term prognostic implications of coronary calcification in patients undergoing percutaneous coronary intervention for obstructive coronary artery disease. METHODS Patient-level data from 6296 patients enrolled in seven clinical drug-eluting stents trials were analysed to identify in angiographic images the presence of severe coronary calcification by an independent academic research organisation (Cardialysis, Rotterdam, The Netherlands). Clinical outcomes at 3-years follow-up including all-cause mortality, death-myocardial infarction (MI), and the composite end-point of all-cause death-MI-any revascularisation were compared between patients with and without severe calcification. RESULTS Severe calcification was detected in 20% of the studied population. Patients with severe lesion calcification were less likely to have undergone complete revascularisation (48% vs 55.6%, p<0.001) and had an increased mortality compared with those without severely calcified arteries (10.8% vs 4.4%, p<0.001). The event rate was also high in patients with severely calcified lesions for the combined end-point death-MI (22.9% vs 10.9%; p<0.001) and death-MI- any revascularisation (31.8% vs 22.4%; p<0.001). On multivariate Cox regression analysis, including the Syntax score, the presence of severe coronary calcification was an independent predictor of poor prognosis (HR: 1.33 95% CI 1.00 to 1.77, p=0.047 for death; 1.23, 95% CI 1.02 to 1.49, p=0.031 for death-MI, and 1.18, 95% CI 1.01 to 1.39, p=0.042 for death-MI- any revascularisation), but it was not associated with an increased risk of stent thrombosis. CONCLUSIONS Patients with severely calcified lesions have worse clinical outcomes compared to those without severe coronary calcification. Severe coronary calcification appears as an independent predictor of worse prognosis, and should be considered as a marker of advanced atherosclerosis.
Resumo:
OBJECTIVES The aim of the study was to investigate 4-year outcomes and predictors of repeat revascularization in patients treated with the Resolute zotarolimus-eluting stent (R-ZES) (Medtronic, Minneapolis, Minnesota) and XIENCE V everolimus-eluting stent (EES) (Abbott Vascular, Abbott Park, Illinois) in the RESOLUTE (A Randomized Comparison of a Zotarolimus-Eluting Stent With an Everolimus-Eluting Stent for Percutaneous Coronary Intervention) All-Comers trial. BACKGROUND Data on long-term outcomes of new-generation drug-eluting stents are limited, and predictors of repeat revascularization due to restenosis and/or progression of disease are largely unknown. METHODS Patients were randomly assigned to treatment with the R-ZES (n = 1,140) or the EES (n = 1,152). We assessed pre-specified safety and efficacy outcomes at 4 years including target lesion failure and stent thrombosis. Predictors of revascularization at 4 years were identified by Cox regression analysis. RESULTS At 4 years, the rates of target lesion failure (15.2% vs. 14.6%, p = 0.68), cardiac death (5.4% vs. 4.7%, p = 0.44), and target vessel myocardial infarction (5.3% vs. 5.4%, p = 1.00), clinically-indicated target lesion revascularization (TLR) (7.0% vs. 6.5%, p = 0.62), and definite/probable stent thrombosis (2.3% vs. 1.6%, p = 0.23) were similar with the R-ZES and EES. Independent predictors of TLR were age, insulin-treated diabetes, SYNTAX (Synergy between PCI with Taxus and Cardiac Surgery) score, treatment of saphenous vein grafts, ostial lesions, and in-stent restenosis. Independent predictors of any revascularization were age, diabetes, previous percutaneous coronary intervention, absence of ST-segment elevation myocardial infarction, smaller reference vessel diameter, SYNTAX score, and treatment of left anterior descending, right coronary artery, saphenous vein grafts, ostial lesions, or in-stent restenosis. CONCLUSIONS R-ZES and EES demonstrated similar safety and efficacy throughout 4 years. TLR represented less than one-half of all repeat revascularization procedures. Patient- and lesion-related factors predicting the risk of TLR and any revascularization showed considerable overlap. (A Randomized Comparison of a Zotarolimus-Eluting Stent With an Everolimus-Eluting Stent for Percutaneous Coronary Intervention [RESOLUTE-AC]; NCT00617084).
Resumo:
BACKGROUND Biodegradable polymers for release of antiproliferative drugs from drug-eluting stents aim to improve vascular healing. We assessed noninferiority of a novel ultrathin strut drug-eluting stent releasing sirolimus from a biodegradable polymer (Orsiro, O-SES) compared with the durable polymer Xience Prime everolimus-eluting stent (X-EES) in terms of the primary end point in-stent late lumen loss at 9 months. METHODS AND RESULTS A total of 452 patients were randomly assigned 2:1 to treatment with O-SES (298 patients, 332 lesions) or X-EES (154 patients, 173 lesions) in a multicenter, noninferiority trial. The primary end point was in-stent late loss at 9 months. O-SES was noninferior to X-EES for the primary end point (0.10±0.32 versus 0.11±0.29 mm; difference=0.00063 mm; 95% confidence interval, -0.06 to 0.07; Pnoninferiority<0.0001). Clinical outcome showed similar rates of target-lesion failure at 1 year (O-SES 6.5% versus X-EES 8.0%; hazard ratio=0.82; 95% confidence interval, 0.40-1.68; log-rank test: P=0.58) without cases of stent thrombosis. A subgroup of patients (n=55) underwent serial optical coherence tomography at 9 months, which demonstrated similar neointimal thickness among lesions allocated to O-SES and X-EES (0.10±0.04 mm versus 0.11±0.04 mm; -0.01 [-0.04, -0.01]; P=0.37). Another subgroup of patients (n=56) underwent serial intravascular ultrasound at baseline and 9 months indicating a potential difference in neointimal area at follow-up (O-SES, 0.16±0.33 mm(2) versus X-EES, 0.43±0.56 mm(2); P=0.04). CONCLUSIONS Compared with durable polymer X-EES, novel biodegradable polymer-based O-SES was found noninferior for the primary end point in-stent late lumen loss at 9 months. Clinical event rates were comparable without cases of stent thrombosis throughout 1 year of follow-up. CLINICAL TRIAL REGISTRATION URL http://www.clinicaltrials.gov. Unique identifier: NCT01356888.
Resumo:
AIMS Newer-generation drug-eluting stents (DES) have been shown to be superior to first-generation DES. Current-generation DES have zotarolimus, everolimus or biolimus as antiproliferative drugs. Novolimus, a metabolite of sirolimus, has been specifically developed to provide efficacy similar to currently available agents at a lower dose and thus requires a lower polymer load. We report the final five-year outcomes of the EXCELLA II trial comparing a zotarolimus-eluting stent (ZES) with a novolimus-eluting stent (NES). METHODS AND RESULTS EXCELLA II is a prospective, multicentre, single-blind, non-inferiority clinical trial. Patients (n=210) with a maximum of two de novo lesions in two different epicardial vessels were randomised (2:1) to treatment with either NES (n=139) or ZES (n=71). At five-year follow-up, patients in the NES group had a significantly lower incidence of the patient-oriented (HR 0.53, 95% CI: 0.32-0.87, p=0.013) and device-oriented (HR 0.38, 95% CI: 0.17-0.83, p=0.011) composite endpoints. There was no difference in cardiac death and definite/probable stent thrombosis between the two groups; however, there was a trend towards reduction in myocardial infarction and repeat revascularisation in the NES group at five-year follow-up. CONCLUSIONS At five-year follow-up, the incidence of device- and patient-oriented events was significantly lower in the NES group. Further studies, adequately powered for clinical outcomes, are warranted. TRIAL REGISTRATION ClinicalTrials.gov number NCT00792753.
Resumo:
AIMS Patients with ST-segment elevation myocardial infarction (STEMI) feature thrombus-rich lesions with large necrotic core, which are usually associated with delayed arterial healing and impaired stent-related outcomes. The use of bioresorbable vascular scaffolds (Absorb) has the potential to overcome these limitations owing to restoration of native vessel lumen and physiology at long term. The purpose of this randomized trial was to compare the arterial healing response at short term, as a surrogate for safety and efficacy, between the Absorb and the metallic everolimus-eluting stent (EES) in patients with STEMI. METHODS AND RESULTS ABSORB-STEMI TROFI II was a multicentre, single-blind, non-inferiority, randomized controlled trial. Patients with STEMI who underwent primary percutaneous coronary intervention were randomly allocated 1:1 to treatment with the Absorb or EES. The primary endpoint was the 6-month optical frequency domain imaging healing score (HS) based on the presence of uncovered and/or malapposed stent struts and intraluminal filling defects. Main secondary endpoint included the device-oriented composite endpoint (DOCE) according to the Academic Research Consortium definition. Between 06 January 2014 and 21 September 2014, 191 patients (Absorb [n = 95] or EES [n = 96]; mean age 58.6 years old; 17.8% females) were enrolled at eight centres. At 6 months, HS was lower in the Absorb arm when compared with EES arm [1.74 (2.39) vs. 2.80 (4.44); difference (90% CI) -1.06 (-1.96, -0.16); Pnon-inferiority <0.001]. Device-oriented composite endpoint was also comparably low between groups (1.1% Absorb vs. 0% EES). One case of definite subacute stent thrombosis occurred in the Absorb arm (1.1% vs. 0% EES; P = ns). CONCLUSION Stenting of culprit lesions with Absorb in the setting of STEMI resulted in a nearly complete arterial healing which was comparable with that of metallic EES at 6 months. These findings provide the basis for further exploration in clinically oriented outcome trials.
Resumo:
BACKGROUND Drug eluting stents with durable polymers may be associated with hypersensitivity, delayed healing, and incomplete endothelialization, which may contribute to late/very late stent thrombosis and the need for prolonged dual antiplatelet therapy. Bioabsorbable polymers may facilitate stent healing, thus enhancing clinical safety. The SYNERGY stent is a thin-strut, platinum chromium metal alloy platform with an ultrathin bioabsorbable Poly(D,L-lactide-co-glycolide) abluminal everolimus-eluting polymer. We performed a multicenter, randomized controlled trial for regulatory approval to determine noninferiority of the SYNERGY stent to the durable polymer PROMUS Element Plus everolimus-eluting stent. METHODS AND RESULTS Patients (n=1684) scheduled to undergo percutaneous coronary intervention for non-ST-segment-elevation acute coronary syndrome or stable coronary artery disease were randomized to receive either the SYNERGY stent or the PROMUS Element Plus stent. The primary end point of 12-month target lesion failure was observed in 6.7% of SYNERGY and 6.5% PROMUS Element Plus treated subjects by intention-to-treat (P=0.83 for difference; P=0.0005 for noninferiority), and 6.4% in both the groups by per-protocol analysis (P=0.0003 for noninferiority). Clinically indicated revascularization of the target lesion or definite/probable stent thrombosis were observed in 2.6% versus 1.7% (P=0.21) and 0.4% versus 0.6% (P=0.50) of SYNERGY versus PROMUS Element Plus-treated subjects, respectively. CONCLUSIONS In this randomized trial, the SYNERGY bioabsorbable polymer everolimus-eluting stent was noninferior to the PROMUS Element Plus everolimus-eluting stent with respect to 1-year target lesion failure. These data support the relative safety and efficacy of SYNERGY in a broad range of patients undergoing percutaneous coronary intervention. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01665053.
Resumo:
BACKGROUND An increased body mass index (BMI) is associated with a high risk of cardiovascular disease and reduction in life expectancy. However, several studies reported improved clinical outcomes in obese patients treated for cardiovascular diseases. The aim of the present study is to investigate the impact of BMI on long-term clinical outcomes after implantation of zotarolimus eluting stents. METHODS Individual patient data were pooled from the RESOLUTE Clinical Program comprising five trials worldwide. The study population was sorted according to BMI tertiles and clinical outcomes were evaluated at 2-year follow-up. RESULTS Data from a total of 5,127 patients receiving the R-ZES were included in the present study. BMI tertiles were as follow: I tertile (≤ 25.95 kg/m(2) -Low or normal weight) 1,727 patients; II tertile (>25.95 ≤ 29.74 kg/m(2) -overweight) 1,695 patients, and III tertile (>29.74 kg/m(2) -obese) 1,705 patients. At 2-years follow-up no difference was found for patients with high BMI (III tertile) compared with patients with normal or low BMI (I tertile) in terms of target lesion failure (I-III tertile, HR [95% CI] = 0.89 [0.69, 1.14], P = 0.341; major adverse cardiac events (I-III tertile, HR [95% CI] = 0.90 [0.72, 1.14], P = 0.389; cardiac death (I-III tertile, HR [95% CI] = 1.20 [0.73, 1.99], P = 0.476); myocardial infarction (I-III tertile, HR [95% CI] = 0.86 [0.55, 1.35], P = 0.509; clinically-driven target lesion revascularization (I-III tertile, HR [95% CI] = 0.75 [0.53, 1.08], P = 0.123; definite or probable stent thrombosis (I-III tertile, HR [95% CI] = 0.98 [0.49, 1.99], P = 0.964. CONCLUSIONS In the present study, the patients' body mass index was found to have no impact on long-term clinical outcomes after coronary artery interventions.
Resumo:
BACKGROUND No data are available on the long-term performance of ultrathin strut biodegradable polymer sirolimus-eluting stents (BP-SES). We reported 2-year clinical outcomes of the BIOSCIENCE (Ultrathin Strut Biodegradable Polymer Sirolimus-Eluting Stent Versus Durable Polymer Everolimus-Eluting Stent for Percutaneous Coronary Revascularisation) trial, which compared BP-SES with durable-polymer everolimus-eluting stents (DP-EES) in patients undergoing percutaneous coronary intervention. METHODS AND RESULTS A total of 2119 patients with minimal exclusion criteria were assigned to treatment with BP-SES (n=1063) or DP-EES (n=1056). Follow-up at 2 years was available for 2048 patients (97%). The primary end point was target-lesion failure, a composite of cardiac death, target-vessel myocardial infarction, or clinically indicated target-lesion revascularization. At 2 years, target-lesion failure occurred in 107 patients (10.5%) in the BP-SES arm and 107 patients (10.4%) in the DP-EES arm (risk ratio [RR] 1.00, 95% CI 0.77-1.31, P=0.979). There were no significant differences between BP-SES and DP-EES with respect to cardiac death (RR 1.01, 95% CI 0.62-1.63, P=0.984), target-vessel myocardial infarction (RR 0.91, 95% CI 0.60-1.39, P=0.669), target-lesion revascularization (RR 1.17, 95% CI 0.81-1.71, P=0.403), and definite stent thrombosis (RR 1.38, 95% CI 0.56-3.44, P=0.485). There were 2 cases (0.2%) of definite very late stent thrombosis in the BP-SES arm and 4 cases (0.4%) in the DP-EES arm (P=0.423). In the prespecified subgroup of patients with ST-segment elevation myocardial infarction, BP-SES was associated with a lower risk of target-lesion failure compared with DP-EES (RR 0.48, 95% CI 0.23-0.99, P=0.043, Pinteraction=0.026). CONCLUSIONS Comparable safety and efficacy profiles of BP-SES and DP-EES were maintained throughout 2 years of follow-up. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT01443104.
Resumo:
Coronary heart disease is a major cause of morbidity and mortality worldwide. Percutaneous coronary intervention (PCI) has become the most widely used method of coronary artery revascularisation. The use of stents to hold open atherosclerosis induced arterial narrowing has significantly reduced elastic recoil and acute vessel occlusion following balloon angioplasty. However, bare metal stents have been associated with in-stent restenosis attributed to vascular smooth muscle cell (VSMC) hyperplasia and excessive neointimal formation. The resultant luminal renarrowing may manifest clinically with the return of symptoms such as chest pain or shortness of breath. The development of drug eluting stents has significantly reduced the incidence of in-stent restenosis (ISR). Unfortunately the antiproliferative medications used not only inhibit VSMC proliferation but also re-endothelialisation of the stented vessel. In addition, the drug impregnated polymer coating has been associated with a chronic inflammatory response within the vessel wall predisposing patients to stent thrombosis. Thus the identification of novel therapies which promote vessel healing without excessive proliferative or inflammatory response may improve long term outcome and reduce the need for repeated revascularisation. MicroRNAs (miRs) are short (18-25 nucleotide) non-coding RNAs acting to regulate gene expression. By binding to the 3’untranslated region of mRNA they act to fine tune gene expression either by mRNA degradation or translational repression. Originally identified in coordinating tissue development microRNAs have also been shown to play important roles coordinating the inflammatory response and in numerous cardiovascular diseases. MiR-21 has been identified in human atherosclerotic plaques, arteriosclerosis obliterans and abdominal aortic aneurysms. In addition, its up regulation has been documented in preclinical models of vascular injury. This study sought to identify the role of miR-21 in the development of ISR. Utilising a small animal model of stenting and in vitro techniques, we sought to investigate its influence upon VSMC and immune cell response following stenting. 19 The refinement of a murine stenting model within the Baker laboratory and the electrochemical dissolution of the metal stent from within harvested vascular tissues significantly improved the ability to perform detailed histological analysis. In addition, identification of miRNAs using in situ hybridisation was achieved for the first time within stented tissue. Neointimal formation and ISR was significantly reduced in mice in which miR-21 had been genetically deleted. In addition, neointimal composition was found to be altered in miR-21 KO mice with reductions in VSMC and elastin content demonstrated. Importantly, no difference in re-endothelialisation was observed. In vitro analysis demonstrated that VSMCs from miR-21 KO mice had both reduced proliferative and migratory capacity following platelet derived growth factor stimulation. Molecular analysis revealed that these differences may, at least in part, be due to de-repression of programmed cell death 4 (PDCD4). PDCD4 is a known miR-21 target within VSMCs implicated in the suppression of proliferation and promotion of apoptosis. Unfortunately, initial attempts at antimiR mediated knockdown of miR-21 in vivo, failed to produce a similar change in the suppression of ISR. Furthermore, a significant alteration in macrophage polarisation state within the neointima of miR-21 WT and KO mice was noted. Immunohistochemical staining revealed a preponderance of anti-inflammatory M2 macrophages in KO mice. Analysis of bone marrow derived macrophages from miR-21 KO mice demonstrated an increased level of the peroxisome proliferation activating receptor-γ (PPARγ) which facilitates M2 polarisation. Importantly, significant alterations in numerous pro-inflammatory cytokines, which also have mitogenic effects, were also found following genetic deletion of miR-21. In Summary, this is the first study to look at miRs in the development of ISR. MiR-21 plays an important role in the development of ISR by influencing the proliferative response of VSMCs and modulating the immune response following stent deployment. Further attempts to modulate miR-21 expression following PCI may reduce ISR and the need for repeat revascularisation while also reducing the risk of stent thrombosis.
Resumo:
BACKGROUND: An exciting direction in nanomedicine would be to analyze how living cells respond to conducting polymers. Their application for tissue regeneration may advance the performance of drug eluting stents by addressing the delayed stent re-endothelialization and late stent thrombosis. METHODS: The suitability of poly (3, 4-ethylenedioxythiophene) (PEDOT) thin films for stents to promote cell adhesion and proliferation is tested in correlation with doping and physicochemical properties. PEDOT doped either with poly (styrenesulfonate) (PSS) or tosylate anion (TOS) was used for films' fabrication by spin coating and vapor phase polymerization respectively. PEGylation of PEDOT: TOS for reduced immunogenicity and biofunctionalization of PEDOT: PSS with RGD peptides for induced cell proliferation was further applied. Atomic Force Microscopy and Spectroscopic Ellipsometry were implemented for nanotopographical, structural, optical and conductivity measurements in parallel with wettability and protein adsorption studies. Direct and extract testing of cell viability and proliferation of L929 fibroblasts on PEDOT samples by MTT assay in line with SEM studies follow. RESULTS: All PEDOT thin films are cytocompatible and promote human serum albumin adsorption. PEDOT:TOS films were found superior regarding cell adhesion as compared to controls. Their nanotopography and hydrophilicity are significant factors that influence cytocompatibility. PEGylation of PEDOT:TOS increases their conductivity and hydrophilicity with similar results on cell viability with bare PEDOT:TOS. The biofunctionalized PEDOT:PSS thin films show enhanced cell proliferation. CONCLUSIONS: The application of PEDOT polymers has evolved as a new perspective to advance stents. GENERAL SIGNIFICANCE: In this work, nanomedicine involving nanotools and novel nanomaterials merges with bioelectronics to stimulate tissue regeneration for cardiovascular implants. This article is part of a Special Issue entitled Organic Bioelectronics - Novel Applications in Biomedicine.
Resumo:
Background: Fondaparinux is considered an agent with a well-established safety and efficacy profile in the treatment of non-ST segment elevation acute coronary syndromes, but when used alone, is associated to a higher incidence of thrombotic complications during invasive coronary procedures, requiring the supplementation of an anti-IIa agent. This study aimed to evaluate the efficacy and safety of percutaneous coronary intervention (PCI) in patients with non-ST segment elevation acute coronary syndromes previously treated with fondaparinux. Methods: Prospective, controlled registry enrolling 127 consecutive patients submitted to an early invasive stratification during treatment with fondaparinux, with supplementation of intravenous unfractionated heparin at a dose of 85 U/kg at the time of PCI. Results: The rate of the composite primary endpoint including death, acute myocardial infarction, stroke, stent thrombosis or emergency myocardial revascularization was 3.2%. The cumulative incidence of major bleeding and vascular complications was 3.2%. There were no cases of guidecatheter thrombosis or abrupt vessel closure. Conclusions: PCI in patients with acute coronary syndromes receiving fondaparinux is associated with a low rate of major adverse cardiovascular ischemic events and severe hemorrhagic complications. Supplementation of unfractionated heparin during the invasive procedures eliminates the risk of catheter-related thrombosis.
Resumo:
Aims: The long-term clinical performance of drug-eluting stents (DES) coated with biodegradable polymers is poorly known. Methods and results: A total of 274 coronary patients were randomly allocated to paclitaxel-eluting stents, sirolimus-eluting stents, or bare metal stems (2:2:1 ratio). The two DES used the same biodegradable polymers and were identical except for the drug. At three years, the pooled DES population had similar rates of cardiac death or myocardial infarction (9.0% vs. 7.1; p=0.6), but lower risk of repeat interventions (10.0% vs. 29.9%; p<0.01) than controls with bare stents. The cumulative 3-year incidence of definite or probable stent thrombosis in the pooled DES group was 2.3% (first year: 1.8%; second year: 0.4%; third year: zero). There were no significant differences in outcomes between paclitaxel- and sirolimus-eluting stents. Conclusions: The biodegradable-polymer coated DES releasing either paclitaxel or sirolimus were effective in reducing the 3-year rate of re-interventions.
Resumo:
The aim of this analysis was to assess the effect of body mass index (BMI) on 1-year outcomes in patients enrolled in a contemporary percutaneous coronary intervention trial comparing a sirolimus-eluting stent with a durable polymer to a biolimus-eluting stent with a biodegradable polymer. A total of 1,707 patients who underwent percutaneous coronary intervention were randomized to treatment with either biolimus-eluting stents (n = 857) or sirolimus-eluting stents (n = 850). Patients were assigned to 1 of 3 groups according to BMI: normal (<25 kg/m(2)), overweight (25 to 30 kg/m(2)), or obese (>30 kg/m(2)). At 1 year, the incidence of the composite of cardiac death, myocardial infarction, and clinically justified target vessel revascularization was assessed. In addition, rates of clinically justified target lesion revascularization and stent thrombosis were assessed. Cox proportional-hazards analysis, adjusted for clinical differences, was used to develop models for 1-year mortality. Forty-five percent of the patients (n = 770) were overweight, 26% (n = 434) were obese, and 29% (n = 497) had normal BMIs. At 1-year follow-up, the cumulative rate of cardiac death, myocardial infarction, and clinically justified target vessel revascularization was significantly higher in the obese group (8.7% in normal-weight, 11.3% in overweight, and 14.5% in obese patients, p = 0.01). BMI (hazard ratio 1.47, 95% confidence interval 1.02 to 2.14, p = 0.04) was an independent predictor of stent thrombosis. Stent type had no impact on the composite of cardiac death, myocardial infarction, and clinically justified target vessel revascularization at 1 year in the 3 BMI groups (hazard ratio 1.08, 95% confidence interval 0.63 to 1.83, p = 0.73). In conclusion, BMI was an independent predictor of major adverse cardiac events at 1-year clinical follow-up. The higher incidence of stent thrombosis in the obese group may suggest the need for a weight-adjusted dose of clopidogrel.
Resumo:
We performed a pooled analysis of three trials comparing titanium-nitride-oxide-coated bioactive stents (BAS) with paclitaxel-eluting stents (PES) in 1,774 patients. All patients were followed for 12 months. The primary outcomes of interest were recurrent myocardial infarction (MI), death and target lesion revascularization (TLR). Secondary endpoints were stent thrombosis (ST) and major adverse cardiac events (MACE) including MI, death and TLR. There were 922 patients in the BAS group and 852 in the PES group. BAS significantly reduced the risk of recurrent MI (2.7% vs. 5.6%; risk ratio 0.50, 95% CI 0.31-0.81; p = 0.004) and MACE (8.9% vs. 12.6%; risk ratio 0.71, 95% CI 0.54-0.94; p = 0.02) during the 12 months of follow up. In contrast, the differences between BAS and PES were not statistically significant with respect to TLR (risk ratio 0.98, 95% CI 0.68-1.41), death (risk ratio 0.96, 95% CI 0.61-1.51) and definite ST (risk ratio 0.28, 95% CI 0.05-1.47). In conclusion, the results of this analysis suggest that BAS is effective in reducing TLR and improves clinical outcomes by reducing MI and MACE compared with PES.