971 resultados para statistical science
Resumo:
At NDSS 2012, Yan et al. analyzed the security of several challenge-response type user authentication protocols against passive observers, and proposed a generic counting based statistical attack to recover the secret of some counting based protocols given a number of observed authentication sessions. Roughly speaking, the attack is based on the fact that secret (pass) objects appear in challenges with a different probability from non-secret (decoy) objects when the responses are taken into account. Although they mentioned that a protocol susceptible to this attack should minimize this difference, they did not give details as to how this can be achieved barring a few suggestions. In this paper, we attempt to fill this gap by generalizing the attack with a much more comprehensive theoretical analysis. Our treatment is more quantitative which enables us to describe a method to theoretically estimate a lower bound on the number of sessions a protocol can be safely used against the attack. Our results include 1) two proposed fixes to make counting protocols practically safe against the attack at the cost of usability, 2) the observation that the attack can be used on non-counting based protocols too as long as challenge generation is contrived, 3) and two main design principles for user authentication protocols which can be considered as extensions of the principles from Yan et al. This detailed theoretical treatment can be used as a guideline during the design of counting based protocols to determine their susceptibility to this attack. The Foxtail protocol, one of the protocols analyzed by Yan et al., is used as a representative to illustrate our theoretical and experimental results.
Resumo:
The cotton strip assay (CSA) is an established technique for measuring soil microbial activity. The technique involves burying cotton strips and measuring their tensile strength after a certain time. This gives a measure of the rotting rate, R, of the cotton strips. R is then a measure of soil microbial activity. This paper examines properties of the technique and indicates how the assay can be optimised. Humidity conditioning of the cotton strips before measuring their tensile strength reduced the within and between day variance and enabled the distribution of the tensile strength measurements to approximate normality. The test data came from a three-way factorial experiment (two soils, two temperatures, three moisture levels). The cotton strips were buried in the soil for intervals of time ranging up to 6 weeks. This enabled the rate of loss of cotton tensile strength with time to be studied under a range of conditions. An inverse cubic model accounted for greater than 90% of the total variation within each treatment combination. This offers support for summarising the decomposition process by a single parameter R. The approximate variance of the decomposition rate was estimated from a function incorporating the variance of tensile strength and the differential of the function for the rate of decomposition, R, with respect to tensile strength. This variance function has a minimum when the measured strength is approximately 2/3 that of the original strength. The estimates of R are almost unbiased and relatively robust against the cotton strips being left in the soil for more or less than the optimal time. We conclude that the rotting rate X should be measured using the inverse cubic equation, and that the cotton strips should be left in the soil until their strength has been reduced to about 2/3.
Resumo:
This article presents the field applications and validations for the controlled Monte Carlo data generation scheme. This scheme was previously derived to assist the Mahalanobis squared distance–based damage identification method to cope with data-shortage problems which often cause inadequate data multinormality and unreliable identification outcome. To do so, real-vibration datasets from two actual civil engineering structures with such data (and identification) problems are selected as the test objects which are then shown to be in need of enhancement to consolidate their conditions. By utilizing the robust probability measures of the data condition indices in controlled Monte Carlo data generation and statistical sensitivity analysis of the Mahalanobis squared distance computational system, well-conditioned synthetic data generated by an optimal controlled Monte Carlo data generation configurations can be unbiasedly evaluated against those generated by other set-ups and against the original data. The analysis results reconfirm that controlled Monte Carlo data generation is able to overcome the shortage of observations, improve the data multinormality and enhance the reliability of the Mahalanobis squared distance–based damage identification method particularly with respect to false-positive errors. The results also highlight the dynamic structure of controlled Monte Carlo data generation that makes this scheme well adaptive to any type of input data with any (original) distributional condition.
Resumo:
A catchment-scale multivariate statistical analysis of hydrochemistry enabled assessment of interactions between alluvial groundwater and Cressbrook Creek, an intermittent drainage system in southeast Queensland, Australia. Hierarchical cluster analyses and principal component analysis were applied to time-series data to evaluate the hydrochemical evolution of groundwater during periods of extreme drought and severe flooding. A simple three-dimensional geological model was developed to conceptualise the catchment morphology and the stratigraphic framework of the alluvium. The alluvium forms a two-layer system with a basal coarse-grained layer overlain by a clay-rich low-permeability unit. In the upper and middle catchment, alluvial groundwater is chemically similar to streamwater, particularly near the creek (reflected by high HCO3/Cl and K/Na ratios and low salinities), indicating a high degree of connectivity. In the lower catchment, groundwater is more saline with lower HCO3/Cl and K/Na ratios, notably during dry periods. Groundwater salinity substantially decreased following severe flooding in 2011, notably in the lower catchment, confirming that flooding is an important mechanism for both recharge and maintaining groundwater quality. The integrated approach used in this study enabled effective interpretation of hydrological processes and can be applied to a variety of hydrological settings to synthesise and evaluate large hydrochemical datasets.
Resumo:
A probabilistic method is proposed to evaluate voltage quality of grid-connected photovoltaic (PV) power systems. The random behavior of solar irradiation is described in statistical terms and the resulting voltage fluctuation probability distribution is then derived. Reactive power capabilities of the PV generators are then analyzed and their operation under constant power factor mode is examined. By utilizing the reactive power capability of the PV-generators to the full, it is shown that network voltage quality can be greatly enhanced.
Resumo:
This thesis proposes three novel models which extend the statistical methodology for motor unit number estimation, a clinical neurology technique. Motor unit number estimation is important in the treatment of degenerative muscular diseases and, potentially, spinal injury. Additionally, a recent and untested statistic to enable statistical model choice is found to be a practical alternative for larger datasets. The existing methods for dose finding in dual-agent clinical trials are found to be suitable only for designs of modest dimensions. The model choice case-study is the first of its kind containing interesting results using so-called unit information prior distributions.
Resumo:
The Galilee and Eromanga basins are sub-basins of the Great Artesian Basin (GAB). In this study, a multivariate statistical approach (hierarchical cluster analysis, principal component analysis and factor analysis) is carried out to identify hydrochemical patterns and assess the processes that control hydrochemical evolution within key aquifers of the GAB in these basins. The results of the hydrochemical assessment are integrated into a 3D geological model (previously developed) to support the analysis of spatial patterns of hydrochemistry, and to identify the hydrochemical and hydrological processes that control hydrochemical variability. In this area of the GAB, the hydrochemical evolution of groundwater is dominated by evapotranspiration near the recharge area resulting in a dominance of the Na–Cl water types. This is shown conceptually using two selected cross-sections which represent discrete groundwater flow paths from the recharge areas to the deeper parts of the basins. With increasing distance from the recharge area, a shift towards a dominance of carbonate (e.g. Na–HCO3 water type) has been observed. The assessment of hydrochemical changes along groundwater flow paths highlights how aquifers are separated in some areas, and how mixing between groundwater from different aquifers occurs elsewhere controlled by geological structures, including between GAB aquifers and coal bearing strata of the Galilee Basin. The results of this study suggest that distinct hydrochemical differences can be observed within the previously defined Early Cretaceous–Jurassic aquifer sequence of the GAB. A revision of the two previously recognised hydrochemical sequences is being proposed, resulting in three hydrochemical sequences based on systematic differences in hydrochemistry, salinity and dominant hydrochemical processes. The integrated approach presented in this study which combines different complementary multivariate statistical techniques with a detailed assessment of the geological framework of these sedimentary basins, can be adopted in other complex multi-aquifer systems to assess hydrochemical evolution and its geological controls.
Resumo:
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging|allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.