947 resultados para solid state Nuclear Magnetic Resonance spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Of all humans thus far studied, Sherpas are considered by many high-altitude biomedical scientists as most exquisitely adapted for life under continuous hypobaric hypoxia. However, little is known about how the heart is protected in hypoxia. Hypoxia defense mechanisms in the Sherpa heart were explored by in vivo, noninvasive 31P magnetic resonance spectroscopy. Six Sherpas were examined under two experimental conditions [normoxic (21% FiO2) and hypoxic (11% FiO2) and in two adaptational states--the acclimated state (on arrival at low-altitude study sites) and the deacclimating state (4 weeks of ongoing exposure to low altitude). Four lowland subjects were used for comparison. We found that the concentration ratios of phosphocreatine (PCr)/adenosine triphosphate (ATP) were maintained at steady-state normoxic values (0.96, SEM = 0.22) that were about half those found in normoxic lowlanders (1.76, SEM = 0.03) monitored the same way at the same time. These differences in heart energetic status between Sherpas and lowlanders compared under normoxic conditions remained highly significant (P < 0.02) even after 4 weeks of deacclimation at low altitudes. In Sherpas under acute hypoxia, the heart rate increased by 20 beats per min from resting values of about 70 beats per min, and the percent saturation of hemoglobin decreased to about 75%. However, these perturbations did not alter the PCr/ATP concentration ratios, which remained at about 50% of the values expected in healthy lowlanders. Because the creatine phosphokinase reaction functions close to equilibrium, these steady-state PCr/ATP ratios presumably coincided with about 3-fold higher free adenosine diphosphate (ADP) concentrations. Higher ADP concentrations (i.e., lower [PCr]/[ATP] ratios) were interpreted to correlate with the Km values for ADP-requiring kinases of glycolysis and to reflect elevated carbohydrate contributions to heart energy needs. This metabolic organization is postulated as advantageous in hypobaria because the ATP yield per O2 molecule is 25-60% higher with glucose than with free fatty acids (the usual fuels utilized in the human heart in postfasting conditions).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to investigate the potential of magic angle spinning nuclear magnetic resonance (MAS NMR) in the elucidation of post-mortem metabolism in muscle biopsies, simultaneous H-1 and (31)p MAS NMR measurements were made continuously on postmortem (20 min to 24 h) muscle longissimus samples from rabbits. The animals had either been or not been given adrenaline (0.5 mg kg(-1) 4 h pre-slaughter) to deplete stores of muscle glycogen. The intracellular pH was calculated from H-1 spectra, and the post-mortem rate of formation of lactate was followed and quantified. Comparison of measurements made on muscle samples from rabbits treated with adrenaline with measurements made on muscle samples from untreated' rabbits revealed significant effects of adrenaline treatment on both pH (pH24 h = 6.42 vs. pH24 It = 5.60) and formation of lactate (16 mmol g(-1) vs. 65 mmol g(-1)). The P-31 NMR spectra were used to follow the rate of degradation of ATP and phosphocreatine. The present study clearly shows that MAS NMR has potential for the study of post-mortem energy metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need to incorporate advanced engineering tools in biology, biochemistry and medicine is in great demand. Many of the existing instruments and tools are usually expensive and require special facilities.^ With the advent of nanotechnology in the past decade, new approaches to develop devices and tools have been generated by academia and industry. ^ One such technology, NMR spectroscopy, has been used by biochemists for more than 2 decades to study the molecular structure of chemical compounds. However, NMR spectrometers are very expensive and require special laboratory rooms for their proper operation. High magnetic fields with strengths in the order of several Tesla make these instruments unaffordable to most research groups.^ This doctoral research proposes a new technology to develop NMR spectrometers that can operate at field strengths of less than 0.5 Tesla using an inexpensive permanent magnet and spin dependent nanoscale magnetic devices. This portable NMR system is intended to analyze samples as small as a few nanoliters.^ The main problem to resolve when downscaling the variables is to obtain an NMR signal with high Signal-To-Noise-Ratio (SNR). A special Tunneling Magneto-Resistive (TMR) sensor design was developed to achieve this goal. The minimum specifications for each component of the proposed NMR system were established. A complete NMR system was designed based on these minimum requirements. The goat was always to find cost effective realistic components. The novel design of the NMR system uses technologies such as Direct Digital Synthesis (DDS), Digital Signal Processing (DSP) and a special Backpropagation Neural Network that finds the best match of the NMR spectrum. The system was designed, calculated and simulated with excellent results.^ In addition, a general method to design TMR Sensors was developed. The technique was automated and a computer program was written to help the designer perform this task interactively.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this thesis is to explore the possible influence of the food matrix on food quality attributes. Using nuclear magnetic resonance techniques, the matrix-dependent properties of different foods were studied and some useful indices were defined to classify food products based on the matrix behaviour when responding to processing phenomena. Correlations were found between fish freshness indices, assessed by certain geometric parameters linked to the morphology of the animal, i.e. a macroscopic structure, and the degradation of the product structure. The same foodomics approach was also applied to explore the protective effect of modified atmospheres on the stability of fish fillets, which are typically susceptible to oxidation of the polyunsaturated fatty acids incorporated in the meat matrix. Here, freshness is assessed by evaluating the time-dependent change in the fish metabolome, providing an established freshness index, and its relationship to lipid oxidation. In vitro digestion studies, focusing on food products with different matrixes, alone and in combination with other meal components (e.g. seasoning), were conducted to investigate possible interactions between enzymes and food, modulated by matrix structure, which influence digestibility. The interaction between water and the gelatinous matrix of the food, consisting of a network of protein gels incorporating fat droplets, was also studied by means of nuclear magnetic relaxometry, in order to create a prediction tool for the correct classification of authentic and counterfeit food products protected by a quality label. This is one of the first applications of an NMR method focusing on the supramolecular structure of the matrix, rather than the chemical composition, to assess food authenticity. The effect of innovative processing technologies, such as PEF applied to fruit products, has been assessed by magnetic resonance imaging, exploiting information associated with the rehydration kinetics exerted by a modified food structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

H-1 NMR spectra of the thyroid hormone thyroxine recorded at low temperature and high field show splitting into two peaks of the resonance due to the H2,6 protons of the inner (tyrosyl) ring. A single resonance is observed in 600 MHz spectra at temperatures above 185 K. An analysis of the line shape as a function of temperature shows that the coalescence phenomenon is due to an exchange process with a barrier of 37 kJ mol(-1). This is identical to the barrier for coalescence of the H2',6' protons of the outer (phenolic) ring reported previously for the thyroid hormones and their analogues. It is proposed that the separate peaks at low temperature are due to resonances for H2,6 in cisoid and transoid conformers which are populated in approximately equal populations. These two peaks are averaged resonances for the individual H2 and H6 protons. Conversion of cisoid to transoid forms can occur via rotation of either the alanyl side chain or the outer ring, from one face of the inner ring to the other. It is proposed that the latter process is the one responsible for the observed coalescence phenomenon. The barrier to rotation of the alanyl side chain is greater than or equal to 37 kJ mol(-1), which is significantly larger than has previously been reported for Csp(2)-Csp(3) bonds in other Ph-CH2-X systems. The recent crystal structure of a hormone agonist bound to the ligand-binding domain of the rat thyroid hormone receptor (Wagner et al. Nature 1995, 378, 690-697) shows the transoid form to be the bound conformation. The significant energy barrier to cisoid/transoid interconversion determined in the current study combined with the tight fit of the hormone to its receptor suggests that interconversion between the forms cannot occur at the receptor site but that selection for the preferred bound form occurs from the 50% population of the transoid form in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The few studies applying single-voxel(1)H spectroscopy in children and adolescents with bipolar disorder (BD) have reported low N-acetyl-aspartate (NAA) levels in the dorsolateral prefrontal cortex (DLPFC), and high myo-inositol / phosphocreatine plus creatine (PCr+Cr) ratios in the anterior cingulate. The aim of this study was to evaluate NAA, glycerophosphocholine plus phosphocholine (GPC+PC) and PCr+Cr in various frontal cortical areas in children and adolescents with BD. We hypothesized that NAA levels within the prefrontal cortex are lower in BD patients than in healthy controls, indicating neurodevelopmental alterations in the former. Method: We studied 43 pediatric patients with DSM-IV BD (19 female, mean age 13.2 +/- 2.9 years) and 38 healthy controls (79 female, mean age 13.9 +/- 2.7 years). We conducted multivoxel in vivo (1)H spectroscopy measurements at 1.5 Tesla using a long echo time of 272 ms to obtain bilateral metabolite levels from the medial prefrontal cortex (MPFC), DLPFC (white and gray matter), cingulate (anterior and posterior), and occipital lobes. We used the nonparametric Mann-Whitney U test to compare neurochemical levels between groups. Results: In pediatric BD patients, NAA and GPC+PC levels in the bilateral MPFC, and PCr+Cr levels in the left MPFC were lower than those seen in the controls. In the left DLPFC white matter, levels of NAA and PCr+Cr were also lower in BD patients than in controls. Conclusions: Lower NAA and PCr+Cr levels in the PFC of children and adolescents with BD may be indicative of abnormal dendritic arborization and neuropil, suggesting neurodevelopmental abnormalities. J. Am. Acad. Child Adolesc. Psychiatry, 2011;50(1):85-94.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent theories of panic disorder propose an extensive involvement of limbic system structures, such as the hippocampus, in the pathophysiology of this condition. Despite this, no prior study has examined exclusively the hippocampal neurochemistry in this disorder. The current study used proton magnetic resonance spectroscopy imaging ((1)H-MRSI) to examine possible abnormalities in the hippocampus in panic disorder patients. Participants comprised 25 panic patients and 18 psychiatrically healthy controls. N-acetylaspartate (NAA, a putative marker of neuronal viability) and choline (Cho, involved in the synthesis and degradation of cell membranes) levels were quantified relative to creatine (Cr, which is thought to be relatively stable among individuals and in different metabolic condition) in both right and left hippocampi. Compared with controls, panic patients demonstrated significantly lower NAA/Cr in the left hippocampus. No other difference was detected. This result is consistent with previous neuroimaging findings of hippocampal alterations in panic and provides the first neurochemical evidence suggestive of involvement of this structure in the disorder. Moreover, lower left hippocampal NAA/Cr in panic disorder may possibly reflect neuronal loss and/or neuronal metabolic dysfunction, and could be related to a deficit in evaluating ambiguous cues. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alcoholism is highly prevalent among bipolar disorder (BD) patients, and its presence is associated with a worse outcome and refractoriness to treatment of the mood disorder. The neurobiological underpinnings that characterize this comorbidity are unknown. We sought to investigate the neurochemical profile of the dorsolateral prefrontal cortex (DLPFC) of BD patients with comorbid alcoholism. A short-TE, single-voxel (1)H spectroscopy acquisition at 1.5T from the left DLFPC of 22 alcoholic BD patients, 26 non-alcoholic BD patients and 54 healthy comparison subjects (HC) were obtained. Absolute levels of N-acetyl aspartate, phosphocreatine plus creatine, choline-containing compounds, myo-inositol, glutamate plus glutamine (Glu + Gln) and glutamate were obtained using the water signal as an internal reference. Analysis of co-variance was used to compare metabolite levels among the three groups. In the primary comparison, non-alcoholic BD patients had higher glutamate concentrations compared to alcoholic BD patients. In secondary comparisons integrating interactions between gender and alcoholism, non-alcoholic BD patients presented significantly higher glutamate plus glutamine (Glu + Gln) than alcoholic BD patients and HC. These results appeared to be driven by differences in male subjects. Alcoholic BD patients with additional drug use disorders presented significantly lower myo-inositol than BD patients with alcoholism alone. The co-occurrence of BD and alcoholism may be characterized by neurochemical abnormalities related to the glutamatergic system and to the inositol second messenger system and/or in glial pathology. These abnormalities may be the neurochemical correlate of an increased risk to develop alcoholism in BD, or of a persistently worse clinical and functional status in BD patients in remission from alcoholism, supporting the clinical recommendation that efforts should be made to prevent or early diagnose and treat alcoholism in BD patients. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Read-only-memory-based (ROM-based) quantum computation (QC) is an alternative to oracle-based QC. It has the advantages of being less magical, and being more suited to implementing space-efficient computation (i.e., computation using the minimum number of writable qubits). Here we consider a number of small (one- and two-qubit) quantum algorithms illustrating different aspects of ROM-based QC. They are: (a) a one-qubit algorithm to solve the Deutsch problem; (b) a one-qubit binary multiplication algorithm; (c) a two-qubit controlled binary multiplication algorithm; and (d) a two-qubit ROM-based version of the Deutsch-Jozsa algorithm. For each algorithm we present experimental verification using nuclear magnetic resonance ensemble QC. The average fidelities for the implementation were in the ranges 0.9-0.97 for the one-qubit algorithms, and 0.84-0.94 for the two-qubit algorithms. We conclude with a discussion of future prospects for ROM-based quantum computation. We propose a four-qubit algorithm, using Grover's iterate, for solving a miniature real-world problem relating to the lengths of paths in a network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fast Field-Cycling Nuclear Magnetic Resonance (FFC-NMR) is a technique used to study the molecular dynamics of different types of materials. The main elements of this equipment are a magnet and its power supply. The magnet used as reference in this work is basically a ferromagnetic core with two sets of coils and an air-gap where the materials' sample is placed. The power supply should supply the magnet being the magnet current controlled in order to perform cycles. One of the technical issues of this type of solution is the compensation of the non-linearities associated to the magnetic characteristic of the magnet and to parasitic magnetic fields. To overcome this problem, this paper describes and discusses a solution for the FFC-NMR power supply based on a four quadrant DC/DC converter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis was focused on the production, extraction and characterization of chitin:β-glucan complex (CGC). In this process, glycerol byproduct from the biodiesel industry was used as carbon source. The selected CGC producing yeast was Komagataella pastoris (formerly known as Pichia pastoris), due the fact that to achieved high cell densities using as carbon source glycerol from the biodiesel industry. Firstly, a screening of K. pastoris strains was performed in shake flask assays, in order to select the strain of K. pastoris with better performance, in terms of growth, using glycerol as a carbon source. K. pastoris strain DSM 70877 achieved higher final cell densities (92-97 g/l), using pure glycerol (99%, w/v) and in glycerol from the biodiesel industry (86%, w/v), respectively, compared to DSM 70382 strain (74-82 g/l). Based on these shake flask assays results, the wild type DSM 70877 strain was selected to proceed for cultivation in a 2 l bioreactor, using glycerol byproduct (40 g/l), as sole carbon source. Biomass production by K. pastoris was performed under controlled temperature and pH (30.0 ºC and 5.0, respectively). More than 100 g/l biomass was obtained in less than 48 h. The yield of biomass on a glycerol basis was 0.55 g/g during the batch phase and 0.63 g/g during the fed-batch phase. In order to optimize the downstream process, by increasing extraction and purification efficiency of CGC from K. pastoris biomass, several assays were performed. It was found that extraction with 5 M NaOH at 65 ºC, during 2 hours, associated to neutralization with HCl, followed by successive washing steps with deionised water until conductivity of ≤20μS/cm, increased CGC purity. The obtained copolymer, CGCpure, had a chitin:glucan molar ratio of 25:75 mol% close to commercial CGC samples extracted from A. niger mycelium, kiOsmetine from Kitozyme (30:70 mol%). CGCpure was characterized by solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and Differential Scanning Calorimetry (DCS), revealing a CGC with higher purity than a CGC commercial (kiOsmetine). In order to optimize CGC production, a set of batch cultivation experiments was performed to evaluate the effect of pH (3.5–6.5) and temperature (20–40 ºC) on the specific cell growth rate, CGC production and polymer composition. Statistical tools (response surface methodology and central composite design) were used. The CGC content in the biomass and the volumetric productivity (rp) were not significantly affected within the tested pH and temperature ranges. In contrast, the effect of pH and temperature on the CGC molar ratio was more pronounced. The highest chitin: β-glucan molar ratio (> 14:86) was obtained for the mid-range pH (4.5-5.8) and temperatures (26–33 ºC). The ability of K. pastoris to synthesize CGC with different molar ratios as a function of pH and temperature is a feature that can be exploited to obtain tailored polymer compositions.(...)