976 resultados para solid concentration
Resumo:
New composition gradient solid electrolytes have been designed for application in high temperature solid-state galvanic sensors and in thermodynamic measurements. The functionally gradient electrolyte consists of a solid solution between two or more ionic conductors with a common ion and gradual variation in composition of the other ionic species. Unequal rates of migration of the ions, caused by the presence of the concentration gradient, may result in the development of space charge, manifesting as diffusion potential. Presented is a theoretical analysis of the EMF of cells incorporating gradient solid electrolytes. An analytical expression is derived for diffusion potential, using the thermodynamics of irreversible processes, for different types of concentration gradients and boundary conditions at the electrode/electrolyte interfaces. The diffusion potential of an isothermal cell incorporating these gradient electrolytes becomes negligible if there is only one mobile ion and the transport numbers of the relatively immobile polyionic species and electrons approach zero. The analysis of the EMF of a nonisothermal cell incorporating a composition gradient solid electrolyte indicates that the cell EMF can be expressed in terms of the thermodynamic parameters at the electrodes and the Seebeck coefficient of the gradient electrolyte under standard conditions when the transport number of one of the ions approaches unity.
Resumo:
Earlier work has reported the existence of a diffusion anomaly in porous solids at dilute sorbate concentrations. In this work we have carried out molecular dynamics simulations at higher sorbate concetrations. Results indicate the persistence of a diffusion anomaly even at significantly higher sorbate concentrations, which means that this anomaly can be used for separation of mixtures under conditions prevailing in industries.
Resumo:
We find that at a mole fraction 0.05 of DMSO (x(DMSO) = 0.05) in aqueous solution, a linear hydrocarbon chain of intermediate length (n = 30-40) adopts the most stable collapsed conformation. In pure water, the same chain exhibits an intermittent oscillation between the collapsed and the extended coiled conformations. Even when the mole fraction of DMSO in the bulk is 0.05, the concentration of the same in the first hydration layer around the hydrocarbon of chain length 30 (n = 30) is as large as 17%. Formation of such hydrophobic environment around the hydrocarbon chain may be viewed as the reason for the collapsed conformation gaining additional stability. We find a second anomalous behavior to emerge near x(DMSO) = 0.15, due to a chain-like aggregation of the methyl groups of DMSO in water that lowers the relative concentration of the DMSO molecules in the hydration layer. We further find that as the concentration of DMSO is gradually increased, it progressively attains the extended coiled structure as the stable conformation. Although Flory-Huggins theory (for binary mixture solvent) fails to predict the anomaly at x(DMSO) = 0.05, it seems to capture the essence of the anomaly at 0.15.
Resumo:
A one-dimensional, biphasic, multicomponent steady-state model based on phenomenological transport equations for the catalyst layer, diffusion layer, and polymeric electrolyte membrane has been developed for a liquid-feed solid polymer electrolyte direct methanol fuel cell (SPE- DMFC). The model employs three important requisites: (i) implementation of analytical treatment of nonlinear terms to obtain a faster numerical solution as also to render the iterative scheme easier to converge, (ii) an appropriate description of two-phase transport phenomena in the diffusive region of the cell to account for flooding and water condensation/evaporation effects, and (iii) treatment of polarization effects due to methanol crossover. An improved numerical solution has been achieved by coupling analytical integration of kinetics and transport equations in the reaction layer, which explicitly include the effect of concentration and pressure gradient on cell polarization within the bulk catalyst layer. In particular, the integrated kinetic treatment explicitly accounts for the nonhomogeneous porous structure of the catalyst layer and the diffusion of reactants within and between the pores in the cathode. At the anode, the analytical integration of electrode kinetics has been obtained within the assumption of macrohomogeneous electrode porous structure, because methanol transport in a liquid-feed SPE- DMFC is essentially a single-phase process because of the high miscibility of methanol with water and its higher concentration in relation to gaseous reactants. A simple empirical model accounts for the effect of capillary forces on liquid-phase saturation in the diffusion layer. Consequently, diffusive and convective flow equations, comprising Nernst-Plank relation for solutes, Darcy law for liquid water, and Stefan-Maxwell equation for gaseous species, have been modified to include the capillary flow contribution to transport. To understand fully the role of model parameters in simulating the performance of the DMCF, we have carried out its parametric study. An experimental validation of model has also been carried out. (C) 2003 The Electrochemical Society.
Resumo:
Binary mixtures have strong influence on activities of polymers and biopolymers even at low cosolvent concentration. Among the several aqueous binary mixtures studied, water-DMSO especially stands out for its unusual behavior at certain specific concentrations of DMSO. In the present work, we study the effect of water-DMSO binary mixture on polymers and biopolymers by taking a simple linear hydrocarbon chain of intermediate length (n = 30) and the protein lysozyme, respectively. We find that at a mole fraction of 0.05 of DMSO (x(DMSO) = 0.05) in aqueous solution, the hydrocarbon chain adopts the collapsed conformation as the most stable and rigid state. In this case of 0.05 mole fraction of DMSO in bulk, the DMSO concentration in the first hydration layer around the polymer is found to be as large as 17%. Formation of such hydrophobic environment around the polymer is the reason for the collapsed state gaining so much stability. Interestingly, similar quench of conformational fluctuation is also observed for the protein investigated. It is observed that in the case of alkane polymer chains, long wavelength fluctuation gets easily quenched, the polymer being purely hydrophobic. However, in case of the protein, quench of fluctuation is prominent only at the hydrophobic surface, and quench of long wavelength fluctuation becomes insignificant for the full protein. As protein contains both hydrophobic and hydrophilic moieties, the extent of quench of conformational fluctuation with respect to that in pure water is almost half for the biopolymer complex (16.83%) than the same for pure hydrophobic polymer chain (32.43%).
Resumo:
Thin foils of Cu, Au and Cu + Au alloys embedded in indium sesquioxide were equilibrated with controlled streams of CO-CO2 mixtures. The equilibrium concentrations of indium in the foils were determined by neutron activation analysis. The corresponding chemical potentials of indium were calculated from the standard free energies of formation of carbon monoxide, carbon dioxide, and indium oxide. It was found that the size difference between the solute and the solvent does not make significant contributions to the solute—solute interaction energy in the α-phase. The chemical potential of indium at one at.% concentration is 8.6 Kcals more negative in gold than in copper at 900°K. The variation of this chemical potential with alloy composition in Cu + Au system was in good agreement with Alcock and Richardson's quasichemical equation. The agreement is strengthened by the accurate knowledge of the co-ordination number in these substitutional solid solutions from X-ray diffraction studies.
Resumo:
Thin foils of copper, silver and gold were equilibrated with tetragonal GeO2 under controlled View the MathML source gas streams at 1000 K. The equilibrium concentration of germanium in the foils was determined by the X-ray fluorescence technique. The standard free energy of formation of tetragonal GeO2 was measured by a solid oxide galvanic cell. The chemical potential of germanium calculated from the experimental data and the free energies of formation of carbon monoxide and carbon dioxide was found to decrease in the sequence Ag + Ge > Au + Ge > Cu + Ge. The more negative value for the chemical potential of germanium in solid copper, compared to that in solid gold, cannot be explained in terms of the strain energy factor, electro-negativity differences or the vaporization energies of the solvent, and suggests that the d band and its hybridization with s electrons are an important factor in determining the absolute values for the chemical potential in dilute solutions. However, the variation of the chemical potential with solute concentration can be correlated to the concentration of s and p electrons in the outer shell.
Solute solute and solvent solute interactions in solid solutions of Cu+Sn, Au+Sn and Cu+Au+Sn alloys
Resumo:
The chemical potentials of tin in its α-solid solutions with Cu, Au and Cu + Au alloys have been measured using a gas-solid equilibration technique. The variation of the excess chemical potential of tin with its composition in the alloy is related to the solute-solute repulsive interaction, while the excess chemical potential at infinite dilution of the solute is a measure of solvent-solute interaction energies. It is shown that solute-solute interaction is primarily determined by the concentration of (s + p) electrons in the conduction band, although the interaction energies are smaller than those predicted by either the rigid band model or calculation based on Friedel oscillations in the potential function. Finally, the variation of the solvent-solute interaction with solvent composition in the ternary system can be accounted for in terms of a quasi-chemical treatment which takes into account the clustering of the solvent atoms around the solute.
Resumo:
Conductivity measurements as a function of temperature and partial pressures of SOs, SO2, and O2, and transference experiments indicate that the transport number of Na + ions is unity in Na2SO4-I. A concentration cell based on this electrolyte Pt, O2' + SO2' + SOs'/Na2SO4-I/SOa" + SO~" + O~", Pt produces emf's that are in agreement with those calculated from the Nernst equation when equilibrium is assumed between the gas species at the electrodes. The cell can be used for monitoring the SO#SOs pollution in air, and in combination with an oxygen probe can be used for the determination of SO=/SOs concentrations in coal combustion reactors, for the evaluation of the partial pressure of $2 in coal gasification systems, and for emission control in nonferrous smelters using sulfide ores. The probe is similar to that developed recently by Gauthier et aL (4, 5) using K=SO4 as the electrolyte, but can operate at higher pressures of SO3. Because of the greater polarizing power of the Na+ ion compared to the K + ion, Na2S207 is less stable and can be formed only at a considerably higher pressure of S03 than that required for K~20~.
Resumo:
The Gibbs energy of mixing for the system Fe3O4-FeAl2O4 was determined at 1573 K using a gas-metal-oxide equilibration technique. Oxide solid solution samples were equilibrated with Pt foils under controlled CO+CO2 gas streams. The equilibrium iron concentration in the foil was determined by chemical analysis. The cation distribution between tetrahedral and octahedral sites in the spinel crystal can be calculated from site-preference energies and used as an alternate method of determining some thermodynamic properties, including the Gibbs energy of mixing. The solvus occurring at low temperatures in the system Fe3C4-FeAl2C4 was used to derive the effect of lattice distortion due to cation size difference on the enthalpy of mixing and to obtain a better approximation to the measured thermodynamic quantities.
Resumo:
Solid solutions of Fe304-FeV204 and Fe304-FeCr204 were prepared and equilibrated with Pt under controlled streams of CO/CO, gas mixtures at 1673 K. The concentration of Fe in Pt was used to determine the activity of Fe304 in the solid solutions. The activity of the second component was calculated by Gibbshhem integration. From these data, the Gibbs energy of mixing was derived for both systems. The experimental results and theoretical values which are determined from calculated cation distribution compare favorably in the case of vanadite solid solutions but not in the case of chromite solid solutions. The difference is attributed to a heat term arising from lattice distortion due to cation size difference. The positive heat of mixing will give rise to a miscibility gap in the system Fe304-FeCr204 at lower temperatures.
Resumo:
The activity of Cr in solid Cr-Mo alloys has been measured at 1873 K using a metal-oxide-gas equilibrium technique. Thin foils of Mo were equilibrated with solid Cr203 under flowing gas mixtures of argon, hydrogen and watervapourof known composition. The equilibrium concentration of Cr in Mo was determined by chemical analysis. These measurements indicate positive deviations from Raoult's law. The activity data obtained in the study at 1873 K are combined with free energy of mixing at 1471 K, calorimetric enthalpy of mixing at 1673 K, and experimental evidence of phase separation at lower temperatures, reported in the literature, to obtain an optimised set of thermodynamic parameters for the Cr-Mosystem in the solid state.
Resumo:
Electrodeposition produced features with a dendritic morphology and features with a branched wire like morphology made up of about 20 nm sized particles. Both the features contained Ag and Ni atoms in a solid solution arrangement. However, the feature made up of nanoparticles contained a greater concentration of Ni as compared to the Ni content in the dendritic feature. The greater Ni content in the Ag-Ni solid solution for the features with nanoparticles when compared to the dendritic morphology features strongly indicated the effect of curvature in increasing the extent of miscibility between bulk immiscible atoms. (C) 2011 The Electrochemical Society. [DOI: 10.1149/2.003202esl] All rights reserved.
Resumo:
The variation in temperature and concentration plays a crucial role in predicting the final microstructure during solidification of a binary alloy. Most of the experimental techniques used to measure concentration and temperature are intrusive in nature and affect the flow field. In this paper, the main focus is laid on in-situ, non-intrusive, transient measurement of concentration and temperature during the solidification of a binary mixture of aqueous ammonium chloride solution (a metal-analog system) in a top cooled cavity using laser based Mach-Zehnder Interferometric technique. It was found from the interferogram, that the angular deviation of fringe pattern and the total number of fringes exhibit significant sensitivity to refractive index and hence are functions of the local temperature and concentration of the NH4Cl solution inside the cavity. Using the fringe characteristics, calibration curves were established for the range of temperature and concentration levels expected during the solidification process. In the actual solidification experiment, two hypoeutectic solutions (5% and 15% NH4Cl) were chosen. The calibration curves were used to determine the temperature and concentration of the solution inside the cavity during solidification of 5% and 15% NH4Cl solution at different instants of time. The measurement was carried out at a fixed point in the cavity, and the concentration variation with time was recorded as the solid-liquid interface approached the measurement point. The measurement exhibited distinct zones of concentration distribution caused by solute rejection and Rayleigh Benard convection. Further studies involving flow visualization with laser scattering confirmed the Rayleigh Benard convection. Computational modeling was also performed, which corroborated the experimental findings. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Studies on the diffusion of methane in a zeolite structure type LTA (as per IZA nomenclature) have indicated that different types of methane zeolite potentials exist in the literature in which methane is treated within the united-atom model. One set of potentials, referred to as model A, has a methane oxygen diameter of 3.14 angstrom, while another set of potential parameters, model B, employs a larger value of 3.46 angstrom. Fritzsche and co-workers (1993) have shown that these two potentials lead to two distinctly different energetic barriers for the passage of methane through the eight-ring window in the cation-free form of zeolite A. Here, we compute the variation of the self-diffusivity (D) with loading (c) for these two types of potentials and show that this slight variation in the diameter changes the concentration dependence qualitatively: thus, D decreases monotonically with c for model A, while D increases and goes through a maximum before finally decreasing for model B. This effect and the surprising congruence of the diffusion coefficients for both models at high loadings is examined in detail at the molecular level. Simulations for different temperatures reveal the Arrhenius behaviour of the self-diffusion coefficient. The apparent activation energy is found to vary with the loading. We conclude that beside the cage-to-cage jumps, which are essential for the migration of the guest molecules, at high concentrations migration within the cage and guest guest interactions with other molecules become increasingly dominant influences on the diffusion coefficient and make the guest zeolite interaction less important for both model A and model B.