945 resultados para soil management


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In Brazil the intensive agriculture use, mainly pasture, is the main cause of the presence of extensive areas of degraded lands. This study aimed to assess the impact of different soil management practices in a pasture degraded area used as garbage disposal. The experiment was performed at the Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas - UNICAMP, in Campinas, state of São Paulo, Brazil, from 1990 to 1996. This area has undergone a process of recovery through removal of trash deposited on the surface, in 1985, levelling of soil, followed by application of limestone, subsoiling, planting of legumes (Crotalaria juncea) and crop rotation (soybean and maize). Since 1990 only popcorn maize was grown and established plots managed with different soil tillage systems, including harrow, chisel plow, moldboard plow, no tillage, disk plow and revolving hoe. One plot was planted exclusively with guinea grass (Panicum maximum) to serve as a reference for minimum loss of soil and another grown on a downhill direction to correspond to the expected maximum erosion. There were differences in sediment loss, nutrient loss and productivity of the popcorn maize in the period analyzed. The chisel plow and no tillage treatments caused the slightest loss of soil and nutrients, compared to other tillage systems. The results show that the soil management systems influenced the physical and chemical characteristics of soil, allowing an economical and environmental recovery of the area, providing the conditions for grain agricultural production.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil management and crop rotations can affect P and K budget in soil, decreasing losses, and increasing fertilizer use efficiency. The P and K budget in the soil-plant system at depths up to 60. cm was studied for different soil managements and crop rotations under no-till for three years in Botucatu, São Paulo, Brazil. The investigated crop rotations were: triticale (X Triticosecale) and sunflower (Helianthus annuus) cropped in autumn-winter; pearl millet (Pennisetum glaucum), forage sorghum (Sorghum bicolor), and Sunn hemp (Crotalaria juncea) were grown in the spring, as well as an additional treatment with chiseling followed by a fallow period; and soybean (Glycini max, L., Merril) was cropped in the summer. Each year triticale and sunflower were grown in plots and pearl millet, forage sorghum, Sunn hemp and of chisel/fallow in sub-plots. The triticale/millet rotation led to the largest decrease in available P within the 0-0.60. m layer of the soil profile and the largest K increase within the 0-0.05. m layer. Potassium mobility in the soil profile and the increases in the available K content in the 0.40-0.60. m layer were independent of the management system. Crop rotations with or without chiseling are not effective in preventing soil P losses. There is considerable K leaching below 0.60. m, but chiseling and the use of high K accumulating plants as triticale results in lower K losses. © 2012 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil tillage and other methods of soil management may influence CO 2 emissions because they accelerate the mineralization of organic carbon in the soil. This study aimed to quantify the CO2 emissions under conventional tillage (CT), minimum tillage (MT) and reduced tillage (RT) during the renovation of sugarcane fields in southern Brazil. The experiment was performed on an Oxisol in the sugarcane-planting area with mechanical harvesting. An undisturbed or no-till (NT) plot was left as a control treatment. The CO2 emissions results indicated a significant interaction (p < 0.001) between tillage method and time after tillage. By quantifying the accumulated emissions over the 44 days after soil tillage, we observed that tillage-induced emissions were higher after the CT system than the RT and MT systems, reaching 350.09 g m-2 of CO2 in CT, and 51.7 and 5.5 g m-2 of CO2 in RT and MT respectively. The amount of C lost in the form of CO2 due to soil tillage practices was significant and comparable to the estimated value of potential annual C accumulation resulting from changes in the harvesting system in Brazil from burning of plant residues to the adoption of green cane harvesting. The CO 2 emissions in the CT system could respond to a loss of 80% of the potential soil C accumulated over one year as result of the adoption of mechanized sugarcane harvesting. Meanwhile, soil tillage during the renewal of the sugar plantation using RT and MT methods would result in low impact, with losses of 12% and 2% of the C that could potentially be accumulated during a one year period. © 2013 IOP Publishing Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The addition of nutrients and/or soil bulking agents is used in bioremediation to increase microbial activity in contaminated soils. For this purpose, some studies have assessed the effectiveness of vinasse in the bioremediation of soils contaminated with petroleum waste. The present study was aimed at investigating the clastogenic/aneugenic potential of landfarming soil from a petroleum refinery before and after addition of sugar cane vinasse using the Allium cepa bioassay. Our results show that the addition of sugar cane vinasse to landfarming soil potentiates the clastogenic effects of the latter probably due the release of metals that were previously adsorbed into the organic matter. These metals may have interacted synergistically with petroleum hydrocarbons present in the landfarming soil treated with sugar cane vinasse. We recommend further tests to monitor the effects of sugar cane vinasse on soils contaminated with organic wastes. © 2012 Springer Science+Business Media B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Physical fractions (free light fraction, intra-aggregate light fraction and heavy fraction) of soil organic matter (SOM) are good indicators of soil quality for sustainable land use. The objective of this study was to evaluate the effect of cover crops on total organic carbon (TOC) and physical fractions of soil organic matter in soil under a no-tillage system (NTS) and a conventional tillage system (CTS, one plowing and two disking). A three-year field experiment was carried out as a cover crop-rice (Oryza sativa)-cover crop-rice rotation. Treatments included cover crops (Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and pearl millet (Pennisetum glaucum), fallow, till or no till. The SOM was physically fractionated in free light fraction (FLF), intra-aggregates light fraction (IALF) and heavy fraction (HF). The levels of C in whole soil were also evaluated, as well as C in the light fractions (FLF+IALF) and in the HF. Results indicated that concentrations of C in the FLF and IALF in surface soils (0-0.05m) were much higher (10.8 and 1.95gkg-1, respectively) than that in the 0.05-0.1m soil depth (7.68 and 1.54gkg-1, respectively) and in the 0.1-0.2m soil depth (4.98 and 1.24gkg-1, respectively). The NTS resulted in higher levels of FLF (12.2gkg-1) and IALF (2.19gkg-1) than with CTS (1.37-7.30gkg-1). Millet had the highest C (19.5gkg-1) and N (1.1gkg-1) concentrations in soil. There was an accumulation of TOC and total N in the surface soil with cover crops, and concentrations of TOC were higher in the HF (79.0%) than in the light fractions (21.0%). Although SOM changed little during the two years of this experiment, the various C fractions were significantly affected by the tillage treatments. We conclude that SOM physical fractionation allowed seeing significant differences caused by the soil management in the organic matter dynamics in a short period of time. © 2013 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For many years, composting has been used as a result of the recycling of organic matter. There is significative animal carcasses accumulation from teaching and researching activities of the university veterinary hospital. Every year, Unesp University needs to dispose correctly about 180 tones of this waste and the composting seemed to be the most sustainable alternative. Piles of animal carcasses were prepared using peanut hulls and tree pruning as bulking agent and water to the first phase of this process. The extracts pH values no impediments for offering germination and indicated a good addition to the soil management. The germination index showed no impediment to the seeds germination on any type of compost and the extracts concentrations not influenced this biological process. No parameters studied assigns risks of contamination of carcasses for the compost development in Unesp according to the proposed design. © 2013 Taylor & Francis Group.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SUM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SUM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SUM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Agriculture provides food, fibre and energy, which have been the foundation for the development of all societies. Soil carbon plays an important role in providing essential ecosystem services. Historically, these have been viewed in terms of plant nutrient availability only, with agricultural management being driven to obtain maximum benefits of this soil function. However, recently, agricultural systems have been envisioned to provide a more complete set of ecosystem services, in a win-win situation, in addition to the products normally associated with agriculture. The expansion and growth of agricultural production in Brazil and Argentina brought about a significant loss of soil carbon stocks, and consequently the associated ecosystem services, such as flooding and erosion control, water filtration and storage. There are several examples of soil carbon management for multiple benefits in Brazil and Argentina, with new soil management techniques attempting to reverse this trend by increasing soil carbon (C) stocks. One example is zero tillage, which has the advantage of reducing CO2 emissions from the soil and thus preserving or augmenting C stocks. Crop rotations that include cover crops have been shown to sequester significant amounts of C, both in Brazilian subtropical regions as well as in the Argentinean Pampas. Associated benefits of zero tillage and cover crop rotations include flood and erosion control and improved water filtration and storage. Another positive example is the adoption of no-burning harvest in the vast sugarcane area in Brazil, which also contributes to reduced CO2 emissions, leaving crop residues on the soil surface and thus helping the conservation of essential plant nutrients and improving water storage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The agricultural lands of this country are its greatest natural resource. History points out that nations with vast areas of good farm land are most likely to prosper and survive over long periods of time. Local communities, too, prosper and flourish in proportion to the productiveness of the surrounding land. Schools, social life, and business develop best in areas where the land is productive and properly managed and conserved. Nebraska, in common with other states, has suffered by the depletion of soil fertility. The reduction in acres in legumes and grasses, and the deplation of the organic matter in the surface soils, has likewise had its effect on the run-off of precipitation, soil blowing, and damage from drouth. In order to know what elements of fertility may become deficient and how soil fertility may be restored and maintained, we should understand the composition, character, and management of soils. In the following pages, some fundamentals of soil feritlity are given, followed later by a discussion of practical soil-management practices.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Indicators of soil quality associated with N-cycling were assessed under different land-use systems (native forest NAT, reforestation with Araucaria angustifolia or Pinus taeda and agricultural use AGR) to appraise the effects on the soil potential for N supply. The soil total N ranged from 2 to 4 g/kg (AGR and NAT, respectively), and the microbial biomass N ranged from 80 to 250 mg/kg, being higher in NAT and A. angustifolia, and lower in P. taeda and AGR sites. Activities of asparaginase (ca. 50200 mg NH4+-N/kg per h), glutaminase (ca. 200800 mg NH4+-N/kg per h) and urease (ca. 80200 mg NH4+-N/kg/h) were also more intense in the NAT and A. angustifolia-reforested soils, indicating greater capacity for N mineralization. The NAT and AGR soils showed the highest and the lowest ammonification rate, respectively (ca. 1 and 0.4 mg NH4+-N/kg per day), but the inverse for nitrification rate (ca. 12 and 26%), indicating a low capacity for N supply, in addition to higher risks of N losses in the AGR soil. A multivariate analysis indicated more similarity between NAT and A. angustifolia-reforested sites, whilst the AGR soil was different and associated with a higher nitrification rate. In general, reforestation with the native species A. angustifolia had less impact than reforestation with the exogenous species P. taeda, considering the soil capacity for N supply. However, AGR use caused more changes, generally decrease in indicators of N-cycling, showing a negative soil management effect on the sustainability of this agroecosystem.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ziel der Untersuchungen war es, das Vorkommen, die Wirkungen und die Interaktionen bodenbürtiger Vitis-Pathogene in Pfropfrebenbeständen zu untersuchen und die Möglichkeiten ihrer Kontrolle im Rahmen des Integrated Pest Managements zu eruieren. Ein Schwerpunkt lag dabei bei den in Zusammenhang mit einem Befall der Rebstöcke durch D. vitifoliae stehenden Wuchsdepressionen und Absterbeerscheinungen. Hintergrund dieser Untersuchungen war die Hypothese, dass sich die Böden von Rebanlagen mit und ohne Wuchsdepressionen und Absterbeerscheinungen der Reben aufgrund ihrer pathogen- bzw. krankheitssuppressiven Eigenschaften unterscheiden. Andererseits wurde untersucht, ob die die Wurzeln besiedelnde Reblaus selbst durch den entomopathogenen Pilz M. anisopliae biologisch kontrolliert werden kann. Im Verlauf dieser Untersuchungen wurde im Wurzelsystem der Reben ein bis dahin unbekannter obligater Parasit aus der Gruppe der Plasmodiophorales identifiziert, der der Gattung Sorosphaera zugewiesen werden konnte. Dies gab Anlass zur morphologischen und ökologischen Untersuchung dieses neuen Organismus, der dann in der Folge als Sorosphaera viticola Kirchmair, Neuhauser, Huber beschrieben wurde. Die Ergebnisse deuten darauf hin, dass die krankheits- bzw. pathogenkonduktiven und -suppressiven Eigenschaften der Böden dafür verantwortlich sind, ob es in einer Rebanlage zu Ausfallerscheinungen kommt oder nicht, wobei ein direkter Zusammenhang mit der Bewirtschaftung der Flächen, namentlich der Versorgung der Böden mit organischer Substanz hergestellt werden konnte.