967 resultados para smart devices
Resumo:
Firms and other organizations use Technology Roadmapping (TRM) extensively as a framework for supporting research and development of future technologies and products that could sustain a competitive advantage. While the importance of technology strategy has received more attention in recent years, few research studies have examined how roadmapping processes are used to explore the potential convergence of products and services that may be developed in the future. The aim of this paper is to introduce an integrated roadmapping process for services, devices and technologies capable of implementing a smart city development R&D project in Korea. The paper applies a QFD (Quality Function Deployment) method to establish interconnections between services and devices, and between devices and technologies. The method is illustrated by a detailed case study, which shows how different types of roadmap can be coordinated with each other to produce a clear representation of the technological changes and uncertainties associated with the strategic planning of complex innovations. © 2012 Elsevier Inc.
Resumo:
Hybrid integration of GaAs/AlGaAs multiple quantum well self electro-optic effect device (SEED) arrays are demonstrated flip-chip bonded directly onto 1 mu m silicon CMOS circuits. The GaAs/AlGaAs MQW devices are designed for 850 nm operation. Some devices are used as input light detectors and others serve as output light modulators. The measurement results under applied biases show good optoelectronic characteristics of elements in SEED arrays. Nearly the same reflection spectrum is obtained for the different devices at an array and the contrast ratio is more than 1.2:1 after flip-chip bonding and packaging. The transimpedance receiver-transmitter circuit can be operated at a frequency of 300 MHz.
Resumo:
We report some investigations on vertical cavity surface emitting laser (VCSEL) arrays and VCSEL based optoelectronic smart photonic multiple chip modules (MCM), consisting of 1 x 16 vertical cavity surface emitting laser array and 16-channel lasers driver 0.35 mum CMOS circuit. The hybrid integrated multiple chip modules based on VCSEL operate at more than 2GHz in -3dB frequency bandwidth.
Resumo:
Hybrid integration of GaAs/AlGaAs multiple quantum well self electro-optic effect device (SEED) arrays are demonstrated flip-chip bonded directly onto 1 mu m silicon CMOS circuits. The GaAs/AlGaAs MQW devices are designed for 850 nm operation. Some devices are used as input light detectors and others serve as output light modulators. The measurement results under applied biases show good optoelectronic characteristics of elements in SEED arrays. Nearly the same reflection spectrum is obtained for the different devices at an array and the contrast ratio is more than 1.2:1 after flip-chip bonding and packaging. The transimpedance receiver-transmitter circuit can be operated at a frequency of 300 MHz.
Resumo:
Grande, Manuel; Browning, R.; Waltham, N.; Parker, D., 'The D-CIXS X-ray mapping spectrometer on SMART-1', Planetary and Space Science (2003) 51(6) pp.427-433 RAE2008
Resumo:
This dissertation proposes and demonstrates novel smart modules to solve challenging problems in the areas of imaging, communications, and displays. The smartness of the modules is due to their ability to be able to adapt to changes in operating environment and application using programmable devices, specifically, electronically variable focus lenses (ECVFLs) and digital micromirror devices (DMD). The proposed modules include imagers for laser characterization and general purpose imaging which smartly adapt to changes in irradiance, optical wireless communication systems which can adapt to the number of users and to changes in link length, and a smart laser projection display that smartly adjust the pixel size to achieve a high resolution projected image at each screen distance. The first part of the dissertation starts with the proposal of using an ECVFL to create a novel multimode laser beam characterizer for coherent light. This laser beam characterizer uses the ECVFL and a DMD so that no mechanical motion of optical components along the optical axis is required. This reduces the mechanical motion overhead that traditional laser beam characterizers have, making this laser beam characterizer more accurate and reliable. The smart laser beam characterizer is able to account for irradiance fluctuations in the source. Using image processing, the important parameters that describe multimode laser beam propagation have been successfully extracted for a multi-mode laser test source. Specifically, the laser beam analysis parameters measured are the M2 parameter, w0 the minimum beam waist, and zR the Rayleigh range. Next a general purpose incoherent light imager that has a high dynamic range (>100 dB) and automatically adjusts for variations in irradiance in the scene is proposed. Then a data efficient image sensor is demonstrated. The idea of this smart image sensor is to reduce the bandwidth needed for transmitting data from the sensor by only sending the information which is required for the specific application while discarding the unnecessary data. In this case, the imager demonstrated sends only information regarding the boundaries of objects in the image so that after transmission to a remote image viewing location, these boundaries can be used to map out objects in the original image. The second part of the dissertation proposes and demonstrates smart optical communications systems using ECVFLs. This starts with the proposal and demonstration of a zero propagation loss optical wireless link using visible light with experiments covering a 1 to 4 m range. By adjusting the focal length of the ECVFLs for this directed line-of-sight link (LOS) the laser beam propagation parameters are adjusted such that the maximum amount of transmitted optical power is captured by the receiver for each link length. This power budget saving enables a longer achievable link range, a better SNR/BER, or higher power efficiency since more received power means the transmitted power can be reduced. Afterwards, a smart dual mode optical wireless link is proposed and demonstrated using a laser and LED coupled to the ECVFL to provide for the first time features of high bandwidths and wide beam coverage. This optical wireless link combines the capabilities of smart directed LOS link from the previous section with a diffuse optical wireless link, thus achieving high data rates and robustness to blocking. The proposed smart system can switch from LOS mode to Diffuse mode when blocking occurs or operate in both modes simultaneously to accommodate multiple users and operate a high speed link if one of the users requires extra bandwidth. The last part of this section presents the design of fibre optic and free-space optical switches which use ECVFLs to deflect the beams to achieve switching operation. These switching modules can be used in the proposed optical wireless indoor network. The final section of the thesis presents a novel smart laser scanning display. The ECVFL is used to create the smallest beam spot size possible for the system designed at the distance of the screen. The smart laser scanning display increases the spatial resoluti on of the display for any given distance. A basic smart display operation has been tested for red light and a 4X improvement in pixel resolution for the image has been demonstrated.
Resumo:
The ability to render objects invisible with a cloak that fits all objects and sizes is a long-standing goal for optical devices. Invisibility devices demonstrated so far typically comprise a rigid structure wrapped around an object to which it is fitted. Here we demonstrate smart metamaterial cloaking, wherein the metamaterial device not only transforms electromagnetic fields to make an object invisible, but also acquires its properties automatically from its own elastic deformation. The demonstrated device is a ground-plane microwave cloak composed of an elastic metamaterial with a broad operational band (10-12 GHz) and nearly lossless electromagnetic properties. The metamaterial is uniform, or perfectly periodic, in its undeformed state and acquires the necessary gradient-index profile, mimicking a quasi-conformal transformation, naturally from a boundary load. This easy-to-fabricate hybrid elasto-electromagnetic metamaterial opens the door to implementations of a variety of transformation optics devices based on quasi-conformal maps.
Resumo:
In this paper we present an Orientation Free Adaptive Step Detection (OFASD) algorithm for deployment in a smart phone for the purposes of physical activity monitoring. The OFASD algorithm detects individual steps and measures a user’s step counts using the smart phone’s in-built accelerometer. The algorithm considers both the variance of an individual’s walking pattern and the orientation of the smart phone. Experimental validation of the algorithm involved the collection of data from 10 participants using five phones (worn at five different body positions) whilst walking on a treadmill at a controlled speed for periods of 5 min. Results indicated that, for steps detected by the OFASD algorithm, there were no significant differences between where the phones were placed on the body (p > 0.05). The mean step detection accuracies ranged from 93.4 % to 96.4 %. Compared to measurements acquired using existing dedicated commercial devices, the results demonstrated that using a smart phone for monitoring physical activity is promising, as it adds value to an accepted everyday accessory, whilst imposing minimum interaction from the user. The algorithm can be used as the underlying component within an application deployed within a smart phone designed to promote self-management of chronic disease where activity measurement is a significant factor, as it provides a practical solution, with minimal requirements for user intervention and less constraints than current solutions.
Resumo:
Due to the intermittent nature of renewable generation it is desirable to consider the potential of controlling the demand-side load to smooth overall system demand. The architecture and control methodologies of such a system on a large scale would require careful consideration. Some of these considerations are discussed in this paper; such as communications infrastructure, systems architecture, control methodologies and security. A domestic fridge is used in this paper as an example of a controllable appliance. A layered approach to smart-grid is introduced and it can be observed how each smart-grid component from physical cables, to the end-devices (or smart-applications) can be mapped to these set layers. It is clear how security plays an integral part in each component of the smart-grid so this is also an integral part of each layer. The controllable fridge is described in detail and as one potential smart-grid application which maps to the layered approach. A demonstration system is presented which involves a Raspberry Pi (a low-power, low-cost device representing the appliance controller).
Resumo:
With the development and deployment of IEC 61850 based smart substations, cybersecurity vulnerabilities of supervisory control and data acquisition (SCADA) systems are increasingly emerging. In response to the emergence of cybersecurity vulnerabilities in smart substations, a test-bed is indispensable to enable cybersecurity experimentation. In this paper, a comprehensive and realistic cyber-physical test-bed has been built to investigate potential cybersecurity vulnerabilities and the impact of cyber-attacks on IEC 61850 based smart substations. This test-bed is close to a real production type environment, and has the ability to carry out end-to-end testing of cyber-attacks and physical consequences. A fuzz testing approach is proposed for detecting IEC 61850 based intelligent electronic devices (IEDs) and validated in the proposed test-bed.
Resumo:
Recently there has been an increase of interest in implementing a new set of home appliances, known as Smart Appliances that integrate Information Technologies, the Internet of Things and the ability of communicating with other devices. While Smart Appliances are characterized as an important milestone on the path to the Smart Grid, by being able to automatically schedule their loads according to a tariff or reflecting the power that is generated using renewable sources, there is not a clear understanding on the impact that the behavior of such devices will have in the comfort levels of users, when they shift their working periods to earlier, or later than, a preset time. Given these considerations, in this work we analyse the results of an assessment survey carried out to a group of Home Appliance users regarding their habits when dealing with these machines and the subjective impact in quality caused by either finishing its programs before or after the time limit set by the user. The results of this work are expected to be used as input for the evaluation of load scheduling algorithms running in energy management systems. © 2014 Springer International Publishing.
Resumo:
This paper discusses the technology of smart floors as a enabler of smart cities. The discussion will be based on technology that is embedded into the environment that enable location, navigation but also wireless power transmission for powering up elements siting on it, typically mobile devices. One of those examples is the smart floor, this implementation follows two paths, one where the floor is passive, and normally passive RFID's are embedded into the floor, they are used to provide intelligence into the surrounding space, this is normally complemented with a battery powered mobile unit that scans the floor for the sensors and communicates the information to a database which locates the mobile device in the environment. The other path for the smart city enabler is where the floor is active and delivers energy for the objects standing on top of it. In this paper these two approaches will be presented, by discussing the technology behind it. © 2014 IEEE.
Resumo:
Thesis to obtain the Master Degree in Electronics and Telecommunications Engineering