987 resultados para singular value
Resumo:
In general, an inverse problem corresponds to find a value of an element x in a suitable vector space, given a vector y measuring it, in some sense. When we discretize the problem, it usually boils down to solve an equation system f(x) = y, where f : U Rm ! Rn represents the step function in any domain U of the appropriate Rm. As a general rule, we arrive to an ill-posed problem. The resolution of inverse problems has been widely researched along the last decades, because many problems in science and industry consist in determining unknowns that we try to know, by observing its effects under certain indirect measures. Our general subject of this dissertation is the choice of Tykhonov´s regulaziration parameter of a poorly conditioned linear problem, as we are going to discuss on chapter 1 of this dissertation, focusing on the three most popular methods in nowadays literature of the area. Our more specific focus in this dissertation consists in the simulations reported on chapter 2, aiming to compare the performance of the three methods in the recuperation of images measured with the Radon transform, perturbed by the addition of gaussian i.i.d. noise. We choosed a difference operator as regularizer of the problem. The contribution we try to make, in this dissertation, mainly consists on the discussion of numerical simulations we execute, as is exposed in Chapter 2. We understand that the meaning of this dissertation lays much more on the questions which it raises than on saying something definitive about the subject. Partly, for beeing based on numerical experiments with no new mathematical results associated to it, partly for being about numerical experiments made with a single operator. On the other hand, we got some observations which seemed to us interesting on the simulations performed, considered the literature of the area. In special, we highlight observations we resume, at the conclusion of this work, about the different vocations of methods like GCV and L-curve and, also, about the optimal parameters tendency observed in the L-curve method of grouping themselves in a small gap, strongly correlated with the behavior of the generalized singular value decomposition curve of the involved operators, under reasonably broad regularity conditions in the images to be recovered
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A aplicação de métodos de inversão aos dados de múltiplos levantamentos sísmicos interpoços permite a reconstrução de modelos de vagarosidade em 3-D de alta resolução adequados para monitoramento de processos de recuperação avançada de petróleo e caracterização de reservatórios. Entretanto, a falta de cobertura volumétrica uniforme de raios de levantamentos interpoços exige informação adicional ao sistema tomográfico para obtenção de soluções estáveis. A discretização do modelo em uma malha 3-D com células prismáticas triangulares e a decomposição em valores singulares são utilizadas para avaliar a reconstrução tomográfica em 3-D. O ângulo da projeção de modelos-alvo no subespaço ortogonal ao espaço nulo efetivo da matriz tomográfica é um critério adequado para se otimizar a malha de discretização do modelo interpretativo e a geometria de aquisição dos dados de modo a melhorar o condicionamento da reconstrução tomográfica. Esta abordagem pode ser utilizada durante as iterações lineares para redefinir a malha ou avaliar a necessidade de informação a priori adicional ao sistema tomográfico.
Resumo:
Neste trabalho, a decomposição em valores singulares (DVS) de uma matriz A, n x m, que representa a anomalia magnética, é vista como um método de filtragem bidimensional de coerência que separa informações correlacionáveis e não correlacionáveis contidas na matriz de dados magnéticos A. O filtro DVS é definido através da expansão da matriz A em autoimagens e valores singulares. Cada autoimagem é dada pelo produto escalar dos vetores de base, autovetores, associados aos problemas de autovalor e autovetor das matrizes de covariância ATA e AAT. Este método de filtragem se baseia no fato de que as autoimagens associadas a grandes valores singulares concentram a maior parte da informação correlacionável presente nos dados, enquanto que a parte não correlacionada, presumidamente constituída de ruídos causados por fontes magnéticas externas, ruídos introduzidos pelo processo de medida, estão concentrados nas autoimagens restantes. Utilizamos este método em diferentes exemplos de dados magnéticos sintéticos. Posteriormente, o método foi aplicado a dados do aerolevantamento feito pela PETROBRÁS no Projeto Carauari-Norte (Bacia do Solimões), para analisarmos a potencialidade deste na identificação, eliminação ou atenuação de ruídos e como um possível método de realçar feições particulares da anomalia geradas por fontes profundas e rasas. Este trabalho apresenta também a possibilidade de introduzir um deslocamento estático ou dinâmico nos perfis magnéticos, com a finalidade de aumentar a correlação (coerência) entre eles, permitindo assim concentrar o máximo possível do sinal correlacionável nas poucas primeiras autoimagens. Outro aspecto muito importante desta expansão da matriz de dados em autoimagens e valores singulares foi o de mostrar, sob o ponto de vista computacional, que a armazenagem dos dados contidos na matriz, que exige uma quantidade n x m de endereços de memória, pode ser diminuída consideravelmente utilizando p autoimagens. Assim o número de endereços de memória cai para p x (n + m + 1), sem alterar a anomalia, na reprodução praticamente perfeita. Dessa forma, concluímos que uma escolha apropriada do número e dos índices das autoimagens usadas na decomposição mostra potencialidade do método no processamento de dados magnéticos.
Resumo:
A ambiguidade na inversão de dados de geofísica de poço é estudada através da análise fatorial Q-modal. Este método é baseado na análise de um número finito de soluções aceitáveis, que são ordenadas, no espaço de soluções, segundo a direção de maior ambiguidade. A análise da variação dos parâmetros ao longo dessas soluções ordenadas permite caracterizar aqueles que são mais influentes na ambiguidade. Como a análise Q-modal é baseada na determinação de uma região de ambiguidade, obtida de modo empírico a partir de um número finito de soluções aceitáveis, é possível analisar a ambiguidade devida não só a erros nas observações, como também a pequenos erros no modelo interpretativo. Além disso, a análise pode ser aplicada mesmo quando os modelos interpretativos ou a relação entre os parâmetros não são lineares. A análise fatorial é feita utilizando-se dados sintéticos, e então comparada com a análise por decomposição em valores singulares, mostrando-se mais eficaz, uma vez que requer premissas menos restritivas, permitindo, desse modo, caracterizar a ambiguidade de modo mais realístico. A partir da determinação dos parâmetros com maior influência na ambiguidade do modelo é possível reparametrizá-lo, agrupando-os em um único parâmetro, redefinindo assim o modelo interpretativo. Apesar desta reparametrização incorrer na perda de resolução dos parâmetros agrupados, o novo modelo tem sua ambiguidade bastante reduzida.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
[EN]A natural generalization of the classical Moore-Penrose inverse is presented. The so-called S-Moore-Penrose inverse of a m x n complex matrix A, denoted by As, is defined for any linear subspace S of the matrix vector space Cnxm. The S-Moore-Penrose inverse As is characterized using either the singular value decomposition or (for the nonsingular square case) the orthogonal complements with respect to the Frobenius inner product. These results are applied to the preconditioning of linear systems based on Frobenius norm minimization and to the linearly constrained linear least squares problem.
Resumo:
Coarse graining is a popular technique used in physics to speed up the computer simulation of molecular fluids. An essential part of this technique is a method that solves the inverse problem of determining the interaction potential or its parameters from the given structural data. Due to discrepancies between model and reality, the potential is not unique, such that stability of such method and its convergence to a meaningful solution are issues.rnrnIn this work, we investigate empirically whether coarse graining can be improved by applying the theory of inverse problems from applied mathematics. In particular, we use the singular value analysis to reveal the weak interaction parameters, that have a negligible influence on the structure of the fluid and which cause non-uniqueness of the solution. Further, we apply a regularizing Levenberg-Marquardt method, which is stable against the mentioned discrepancies. Then, we compare it to the existing physical methods - the Iterative Boltzmann Inversion and the Inverse Monte Carlo method, which are fast and well adapted to the problem, but sometimes have convergence problems.rnrnFrom analysis of the Iterative Boltzmann Inversion, we elaborate a meaningful approximation of the structure and use it to derive a modification of the Levenberg-Marquardt method. We engage the latter for reconstruction of the interaction parameters from experimental data for liquid argon and nitrogen. We show that the modified method is stable, convergent and fast. Further, the singular value analysis of the structure and its approximation allows to determine the crucial interaction parameters, that is, to simplify the modeling of interactions. Therefore, our results build a rigorous bridge between the inverse problem from physics and the powerful solution tools from mathematics. rn
Resumo:
We establish a fundamental equivalence between singular value decomposition (SVD) and functional principal components analysis (FPCA) models. The constructive relationship allows to deploy the numerical efficiency of SVD to fully estimate the components of FPCA, even for extremely high-dimensional functional objects, such as brain images. As an example, a functional mixed effect model is fitted to high-resolution morphometric (RAVENS) images. The main directions of morphometric variation in brain volumes are identified and discussed.
Resumo:
A basic approach to study a NVH problem is to break down the system in three basic elements – source, path and receiver. While the receiver (response) and the transfer path can be measured, it is difficult to measure the source (forces) acting on the system. It becomes necessary to predict these forces to know how they influence the responses. This requires inverting the transfer path. Singular Value Decomposition (SVD) method is used to decompose the transfer path matrix into its principle components which is required for the inversion. The usual approach to force prediction requires rejecting the small singular values obtained during SVD by setting a threshold, as these small values dominate the inverse matrix. This assumption of the threshold may be subjected to rejecting important singular values severely affecting force prediction. The new approach discussed in this report looks at the column space of the transfer path matrix which is the basis for the predicted response. The response participation is an indication of how the small singular values influence the force participation. The ability to accurately reconstruct the response vector is important to establish a confidence in force vector prediction. The goal of this report is to suggest a solution that is mathematically feasible, physically meaningful, and numerically more efficient through examples. This understanding adds new insight to the effects of current code and how to apply algorithms and understanding to new codes.
Resumo:
This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms.
Resumo:
FEAST is a recently developed eigenvalue algorithm which computes selected interior eigenvalues of real symmetric matrices. It uses contour integral resolvent based projections. A weakness is that the existing algorithm relies on accurate reasoned estimates of the number of eigenvalues within the contour. Examining the singular values of the projections on moderately-sized, randomly-generated test problems motivates orthogonalization-based improvements to the algorithm. The singular value distributions provide experimentally robust estimates of the number of eigenvalues within the contour. The algorithm is modified to handle both Hermitian and general complex matrices. The original algorithm (based on circular contours and Gauss-Legendre quadrature) is extended to contours and quadrature schemes that are recursively subdividable. A general complex recursive algorithm is implemented on rectangular and diamond contours. The accuracy of different quadrature schemes for various contours is investigated.
Resumo:
In this paper, we investigate how a multilinear model can be used to represent human motion data. Based on technical modes (referring to degrees of freedom and number of frames) and natural modes that typically appear in the context of a motion capture session (referring to actor, style, and repetition), the motion data is encoded in form of a high-order tensor. This tensor is then reduced by using N-mode singular value decomposition. Our experiments show that the reduced model approximates the original motion better then previously introduced PCA-based approaches. Furthermore, we discuss how the tensor representation may be used as a valuable tool for the synthesis of new motions.