973 resultados para single particle


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of GNSS tracked Lagrangian drifters allows more realistic quantification of fluid motion and dispersion coefficients than Eulerian techniques because such drifters are analogues of particles that are relevant to flow field characterisation and pollutant dispersion. Using the fast growing Real Time Kinematic (RTK) positioning technique derived from Global Satellite Navigation Systems (GNSS), drifters are developed for high frequency (10 Hz) sampling with position estimates to centimetre accuracy. The drifters are designed with small size and less direct wind drag to follow the sub-surface flow which characterizes dispersion in shallow waters. An analysis of position error from stationary observation indicates that the drifter can efficiently resolve motion up to 1 Hz. The result of the field deployments of the drifter in conjunction with acoustic Eulerian devices shows higher estimate of the drifter streamwise velocities. Single particle statistical analysis of field deployments in a shallow estuarine zone yielded dispersion coefficients estimate comparable to those of dye tracer studies. The drifters capture the tidal elevation during field studies in a tidal estuary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In estuaries and natural water channels, the estimate of velocity and dispersion coefficients is critical to the knowledge of scalar transport and mixing. This estimate is rarely available experimentally at sub-tidal time scale in shallow water channels where high frequency is required to capture its spatio-temporal variation. This study estimates Lagrangian integral scales and autocorrelation curves, which are key parameters for obtaining velocity fluctuations and dispersion coefficients, and their spatio-temporal variability from deployments of Lagrangian drifters sampled at 10 Hz for a 4-hour period. The power spectral densities of the velocities between 0.0001 and 0.8 Hz were well fitted with a slope of 5/3 predicted by Kolmogorov’s similarity hypothesis within the inertial subrange, and were similar to the Eulerian power spectral previously observed within the estuary. The result showed that large velocity fluctuations determine the magnitude of the integral time scale, TL. Overlapping of short segments improved the stability of the estimate of TL by taking advantage of the redundant data included in the autocorrelation function. The integral time scales were about 20 s and varied by up to a factor of 8. These results are essential inputs for spatial binning of velocities, Lagrangian stochastic modelling and single particle analysis of the tidal estuary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to understand the role of translational modes in the orientational relaxation in dense dipolar liquids, we have carried out a computer ''experiment'' where a random dipolar lattice was generated by quenching only the translational motion of the molecules of an equilibrated dipolar liquid. The lattice so generated was orientationally disordered and positionally random. The detailed study of orientational relaxation in this random dipolar lattice revealed interesting differences from those of the corresponding dipolar liquid. In particular, we found that the relaxation of the collective orientational correlation functions at the intermediate wave numbers was markedly slower at the long times for the random lattice than that of the liquid. This verified the important role of the translational modes in this regime, as predicted recently by the molecular theories. The single-particle orientational correlation functions of the random lattice also decayed significantly slowly at long times, compared to those of the dipolar liquid.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed molecular dynamics simulations of Lennard-Jones ellipsoids have been carried out to investigate the emergence of criticality in the single-particle orientational relaxation near the isotropic-nematic (IN) phase transition. The simulations show a sudden appearance of a power-law behavior in the decay of the second-rank orientational relaxation as the IN transition is approached. The simulated value of the power-law exponent is 0.56, which is larger than the mean-field value (0.5) but less than the observed value (0.63) and may be due to the finite size of the simulated system. The decay of the first-rank orientational time correlation function, on the other hand, is nearly exponential but its decay becomes very slow near the isotropic-nematic transition, The zero-frequency rotational friction, calculated from the simulated angular Velocity correlation function, shows a marked increase near the IN transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The structure and dynamics of the two-dimensional linear shear flow of inelastic disks at high area fractions are analyzed. The event-driven simulation technique is used in the hard-particle limit, where the particles interact through instantaneous collisions. The structure (relative arrangement of particles) is analyzed using the bond-orientational order parameter. It is found that the shear flow reduces the order in the system, and the order parameter in a shear flow is lower than that in a collection of elastic hard disks at equilibrium. The distribution of relative velocities between colliding particles is analyzed. The relative velocity distribution undergoes a transition from a Gaussian distribution for nearly elastic particles, to an exponential distribution at low coefficients of restitution. However, the single-particle distribution function is close to a Gaussian in the dense limit, indicating that correlations between colliding particles have a strong influence on the relative velocity distribution. This results in a much lower dissipation rate than that predicted using the molecular chaos assumption, where the velocities of colliding particles are considered to be uncorrelated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown how the single-site coherent potential approximation and the averaged T-matrix approximation become exact in the calculation of the averaged single-particle Green function of the electron in the Anderson model when the site energy is distributed randomly with lorentzian distribution. Using these approximations, Lloyd's exact result is reproduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mathematical model is developed to simulate oxygen consumption, heat generation and cell growth in solid state fermentation (SSF). The fungal growth on the solid substrate particles results in the increase of the cell film thickness around the particles. The model incorporates this increase in the biofilm size which leads to decrease in the porosity of the substrate bed and diffusivity of oxygen in the bed. The model also takes into account the effect of steric hindrance limitations in SSF. The growth of cells around single particle and resulting expansion of biofilm around the particle is analyzed for simplified zero and first order oxygen consumption kinetics. Under conditions of zero order kinetics, the model predicts upper limit on cell density. The model simulations for packed bed of solid particles in tray bioreactor show distinct limitations on growth due to simultaneous heat and mass transport phenomena accompanying solid state fermentation process. The extent of limitation due to heat and/or mass transport phenomena is analyzed during different stages of fermentation. It is expected that the model will lead to better understanding of the transport processes in SSF, and therefore, will assist in optimal design of bioreactors for SSF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a double dot system of equivalent, capacitively coupled semiconducting quantum dots, each coupled to its own lead, in a regime where there are two electrons on the double dot. Employing the numerical renormalization group, we focus here on single-particle dynamics and the zero-bias conductance, considering in particular the rich range of behaviour arising as the interdot coupling is progressively increased through the strong-coupling (SC) phase, from the spin-Kondo regime, across the SU(4) point to the charge-Kondo regime, and then towards and through the quantum phase transition to a charge-ordered ( CO) phase. We first consider the two-self-energy description required to describe the broken symmetry CO phase, and implications thereof for the non-Fermi liquid nature of this phase. Numerical results for single-particle dynamics on all frequency scales are then considered, with particular emphasis on universality and scaling of low-energy dynamics throughout the SC phase. The role of symmetry breaking perturbations is also briefly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The superfluid state of fermion-antifermion fields developed in our previous papers is generalized to include higher orbital and spin states. In addition to single-particle excitations, the system is capable of having real and virtual bound or quasibound composite excitations which are akin to bosons of spinJ P equal to0 �, 1�, 2+, etc. These pseudoscalar, vector, and tensor bosons can be massive or massless and provide the vehicles for strong, electromagnetic, weak, and gravitational interactions. The concept that the basic (unmanifest) fermion-antifermion interaction can lead to a multiplicity of manifest interactions seems to provide a basis for a unified field theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to investigate powder and tablet behavior at the level of mechanical interactions between single particles. Various aspects of powder packing, mixing, compression, and bond formation were examined with the aid of computer simulations. The packing and mixing simulations were based on spring forces interacting between particles. Packing and breakage simulations included systems in which permanent bonds were formed and broken between particles, based on their interaction strengths. During the process, a new simulation environment based on Newtonian mechanics and elementary interactions between the particles was created, and a new method for evaluating mixing was developed. Powder behavior is a complicated process, and many of its aspects are still unclear. Powders as a whole exhibit some aspects of solids and others of liquids. Therefore, their physics is far from clear. However, using relatively simple models based on particle-particle interaction, many powder properties could be replicated during this work. Simulated packing densities were similar to values reported in the literature. The method developed for describing powder mixing correlated well with previous methods. The new method can be applied to determine mixing in completely homogeneous materials, without dividing them into different components. As such, it can describe the efficiency of the mixing method, regardless of the powder's initial setup. The mixing efficiency at different vibrations was examined, and we found that certain combinations of amplitude, direction, and frequencies resulted in better mixing while using less energy. Simulations using exponential force potentials between particles were able to explain the elementary compression behavior of tablets, and create force distributions that were similar to the pressure distributions reported in the literature. Tablet-breaking simulations resulted in breaking strengths that were similar to measured tablet breaking strengths. In general, many aspects of powder behavior can be explained with mechanical interactions at the particle level, and single particle properties can be reliably linked to powder behavior with accurate simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis presents ab initio studies of two kinds of physical systems, quantum dots and bosons, using two program packages of which the bosonic one has mainly been developed by the author. The implemented models, \emph{i.e.}, configuration interaction (CI) and coupled cluster (CC) take the correlated motion of the particles into account, and provide a hierarchy of computational schemes, on top of which the exact solution, within the limit of the single-particle basis set, is obtained. The theory underlying the models is presented in some detail, in order to provide insight into the approximations made and the circumstances under which they hold. Some of the computational methods are also highlighted. In the final sections the results are summarized. The CI and CC calculations on multiexciton complexes in self-assembled semiconductor quantum dots are presented and compared, along with radiative and non-radiative transition rates. Full CI calculations on quantum rings and double quantum rings are also presented. In the latter case, experimental and theoretical results from the literature are re-examined and an alternative explanation for the reported photoluminescence spectra is found. The boson program is first applied on a fictitious model system consisting of bosonic electrons in a central Coulomb field for which CI at the singles and doubles level is found to account for almost all of the correlation energy. Finally, the boson program is employed to study Bose-Einstein condensates confined in different anisotropic trap potentials. The effects of the anisotropy on the relative correlation energy is examined, as well as the effect of varying the interaction potential.}

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microscopic relations between single-particle orientational relaxation time (T, ) , dielectric relaxation time ( T ~ )a,n d many-body orientational relaxation time ( T ~o)f a dipolar liquid are derived. We show that both T~ and T~ are influenced significantly by many-body effects. In the present theory, these many-body effects enter through the anisotropic part of the two-particle direct correlation function of the polar liquid. We use mean-spherical approximation (MSA) for dipolar hard spheres for explicit numerical evaluation of the relaxation times. We find that, although the dipolar correlation function is biexponential, the frequency-dependent dielectric constant is of simple Debye form, with T~ equal to the transverse polarization relaxation time. The microscopic T~ falls in between Debye and Onsager-Glarum expressions at large values of the static dielectric constant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several recent theoretical and computer simulation studies have considered solvation dynamics in a Brownian dipolar lattice which provides a simple model solvent for which detailed calculations can be carried out. In this article a fully microscopic calculation of the solvation dynamics of an ion in a Brownian dipolar lattice is presented. The calculation is based on the non‐Markovian molecular hydrodynamic theory developed recently. The main assumption of the present calculation is that the two‐particle orientational correlation functions of the solid can be replaced by those of the liquid state. It is shown that such a calculation provides an excellent agreement with the computer simulation results. More importantly, the present calculations clearly demonstrate that the frequency‐dependent dielectric friction plays an important role in the long time decay of the solvation time correlation function. We also find that the present calculation provides somewhat better agreement than either the dynamic mean spherical approximation (DMSA) or the Fried–Mukamel theory which use the simulated frequency‐dependent dielectric function. It is found that the dissipative kernels used in the molecular hydrodynamic approach and in the Fried–Mukamel theory are vastly different, especially at short times. However, in spite of this disagreement, the two theories still lead to comparable results in good agreement with computer simulation, which suggests that even a semiquantitatively accurate dissipative kernel may be sufficient to obtain a reliable solvation time correlation function. A new wave vector and frequency‐dependent dissipative kernel (or memory function) is proposed which correctly goes over to the appropriate expressions in both the single particle and the collective limits. This form is expected to lead to better results than all the existing descriptions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent computer simulations on zeolites Y and A have found that the diffusion coefficient and the rate of intercage diffusion exhibit, apart from a linear dependence on the reciprocal of the square of the sorbate diameter, an anomalous peak as sorbate diameter approaches the window diameter. Here we report molecular dynamics simulations of zeolite NaA incorporating framework flexibility as a function of sorbate diameter in order to verify the existence of anomalous diffusion. Results suggest persistence of anomalous diffusion or ring effect. This suggests that the anomalous behavior is a general effect characteristic of zeolites Y and A. The barrier for diffusion across the eight-ring window is seen to be negative and is found to decrease with sorbate size. The effect of sorbate on the cage motion has also been investigated. Results suggest that the window expands during intercage migration only if the sorbate size is comparable to the window diameter. Flexible cage simulations yield a higher value for the diffusion coefficient and also the rate of intercage diffusion. This increase has been shown to be due to an increase in the intercage diffusions via the centralized diffusion mode rather than the surface-mediated mode. It is shown that this increase arises from an increase in the single particle density distribution in the region near the cage center.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the theoretical treatments of the dynamics of solvation of a newly created ion in a dipolar solvent, the self-motion of the solute is usually ignored. Recently, it has been shown that for a light ion the translational motion of the ion can significantly enhance its own rate of solvation. Therefore, solvation itself may not be the rate determining step in the equilibration. Instead, the rate determining step is the search of the low energy configuration which serves to localize the light ion. In this article a microscopic calculation of the probability distribution of the interaction energy of the nascent charge with the dipolar solvent molecules is presented in order to address this problem of solute trapping. It is found that to a good approximation, this distribution is Gaussian and the second moment of this distribution is exactly equal to the half of its own solvation energy. It is shown that this is in excellent agreement with the simulation results that are available for the model Brownian dipolar lattice and for liquid acetonitrile. If the distortion of the solvent by the ion is negligible then the same relation gives the energy distribution for the solvated ion, with the average centered at the final equilibrium solvation energy. These results are expected to be useful in understanding various chemical processes in dipolar liquids. Another interesting outcome of the present study is a simple dynamic argument that supports Onsager's ''inverse snow-ball'' conjecture of solvation of a light ion. A simple derivation of the semi-phenomenological relation between the solvation time correlation function and the single particle orientation, reported recently by Maroncelli et al. (J. Phys. Chem. 97 (1993) 13), is also presented.