842 resultados para side channel attack
Resumo:
Large-conductance Ca(2+)-activated K(+) channels (BK) play a fundamental role in modulating membrane potential in many cell types. The gating of BK channels and its modulation by Ca(2+) and voltage has been the subject of intensive research over almost three decades, yielding several of the most complicated kinetic mechanisms ever proposed. A large number of open and closed states disposed, respectively, in two planes, named tiers, characterize these mechanisms. Transitions between states in the same plane are cooperative and modulated by Ca(2+). Transitions across planes are highly concerted and voltage-dependent. Here we reexamine the validity of the two-tiered hypothesis by restricting attention to the modulation by Ca(2+). Large single channel data sets at five Ca(2+) concentrations were simultaneously analyzed from a Bayesian perspective by using hidden Markov models and Markov-chain Monte Carlo stochastic integration techniques. Our results support a dramatic reduction in model complexity, favoring a simple mechanism derived from the Monod-Wyman-Changeux allosteric model for homotetramers, able to explain the Ca(2+) modulation of the gating process. This model differs from the standard Monod-Wyman-Changeux scheme in that one distinguishes when two Ca(2+) ions are bound to adjacent or diagonal subunits of the tetramer.
Resumo:
Background: Treatment of multinodular goiters (MNGs) is highly controversial. Radioiodine (RAI) therapy is a nonsurgical alternative for the elderly who decline surgery. Recently, recombinant human thyrotropin (rhTSH) has been used to augment RAI uptake and distribution. In this study, we determined the outcome of 30 mCi RAI preceded by rhTSH (0.1 mg) in euthyroid (EU) and hyperthyroid (subclinical/clinical) patients with large MNGs. Methods: This was a prospective cohort study. Forty-two patients (age, 43-80 years) with MNGs were treated with 30 mCi RAI after stimulation with 0.1 mg of rhTSH. Patients were divided into three groups, according to thyroid function: EU (n = 18), subclinically hyperthyroid (SC-H, n = 18), and clinically hyperthyroid (C-H, n = 6). All patients underwent a 90-day low-iodine diet before treatment, and those with clinical hyperthyroidism received methimazole 10 mg daily for 30 days. Serum TSH, free thyroxine (FT4), total triiodothyronine (TT3), and thyroglobulin were measured at baseline and at 24, 48, 72, 168 hours, and 1, 3, 6, 9, 12, 18, 24, and 36 months after therapy. Thyroid volume was assessed by computed tomography at baseline and every 6 months. Results: Patients had high iodine urinary excretion (308 +/- 108 mu g I/L) at baseline. TSH levels at baseline were within the normal range (1.5 +/- 0.7 mu U/mL) in the EU group and suppressed (< 0.3 mu U/mL) in the SC-H and C-H groups. After rhTSH, serum TSH peaked at 24 hours reaching 12.4 +/- 5.85 mu U/mL. After RAI administration, patients in both hyperthyroid groups had a higher increase in FT4 and TT3 compared with those in the EU group (p < 0.001). Thyroglobulin levels increased equally in all three groups until day 7. Thyroid volume decreased significantly in all patients. Side effects were more common in the SC-H and C-H groups (31.4% and 60.4%, respectively) compared with EU patients (17.8%). Permanent hypothyroidism was more prevalent in the EU group (50%) compared with the SC-H (11%) and C-H (16.6%) groups. Conclusions: Patients with MNG may have subclinical and clinical nonautoimmune iodine-induced hyperthyroidism. Despite a low-iodine diet and therapy with methimazole, hyperthyroid patients have a significantly higher increase in FT4 and TT3 levels after RAI ablation. This can lead to important side effects related mostly to the cardiac system. We strongly advise that patients with SC-H and C-H be adequately treated with methimazole and low-iodine diet aiming to normalize their hyperthyroid condition before rhTSH-stimulated treatment with RAI.
Resumo:
Ion channels are pores formed by proteins and responsible for carrying ion fluxes through cellular membranes. The ion channels can assume conformational states thereby controlling ion flow. Physically, the conformational transitions from one state to another are associated with energy barriers between them and are dependent on stimulus, such as, electrical field, ligands, second messengers, etc. Several models have been proposed to describe the kinetics of ion channels. The classical Markovian model assumes that a future transition is independent of the time that the ion channel stayed in a previous state. Others models as the fractal and the chaotic assume that the rate of transitions between the states depend on the time that the ionic channel stayed in a previous state. For the calcium activated potassium channels of Leydig cells the R/S Hurst analysis has indicated that the channels are long-term correlated with a Hurst coefficient H around 0.7, showing a persistent memory in this kinetic. Here, we applied the R/S analysis to the opening and closing dwell time series obtained from simulated data from a chaotic model proposed by L. Liebovitch and T. Toth [J. Theor. Biol. 148, 243 (1991)] and we show that this chaotic model or any model that treats the set of channel openings and closings as independent events is inadequate to describe the long-term correlation (memory) already described for the experimental data. (C) 2008 American Institute of Physics.
Resumo:
Neonatal diabetes is a rare monogenic form of diabetes that usually presents within the first six months of life. It is commonly caused by gain-of-function mutations in the genes encoding the Kir6.2 and SUR1 subunits of the plasmalemmal ATP-sensitive K(+) (K(ATP)) channel. To better understand this disease, we generated a mouse expressing a Kir6.2 mutation (V59M) that causes neonatal diabetes in humans and we used Cre-lox technology to express the mutation specifically in pancreatic beta cells. These beta-V59M mice developed severe diabetes soon after birth, and by 5 weeks of age, blood glucose levels were markedly increased and insulin was undetectable. Islets isolated from beta-V59M mice secreted substantially less insulin and showed a smaller increase in intracellular calcium in response to glucose. This was due to a reduced sensitivity of K(ATP) channels in pancreatic beta cells to inhibition by ATP or glucose. In contrast, the sulfonylurea tolbutamide, a specific blocker of K(ATP) channels, closed K(ATP) channels, elevated intracellular calcium levels, and stimulated insulin release in beta-V59M beta cells, indicating that events downstream of K(ATP) channel closure remained intact. Expression of the V59M Kir6.2 mutation in pancreatic beta cells alone is thus sufficient to recapitulate the neonatal diabetes observed in humans. beta-V59M islets also displayed a reduced percentage of beta cells, abnormal morphology, lower insulin content, and decreased expression of Kir6.2, SUR1, and insulin mRNA. All these changes are expected to contribute to the diabetes of beta-V59M mice. Their cause requires further investigation.
Resumo:
Pair correlations between large transverse momentum neutral pion triggers (p(T) = 4-7 GeV/c) and charged hadron partners (p(T) = 3-7 GeV/c) in central (0%-20%) and midcentral (20%-60%) Au + Au collisions at root s(NN) = 200 GeV are presented as a function of trigger orientation with respect to the reaction plane. The particles are at larger momentum than where jet shape modifications have been observed, and the correlations are sensitive to the energy loss of partons traveling through hot densematter. An out-of-plane trigger particle produces only 26 +/- 20% of the away-side pairs that are observed opposite of an in-plane trigger particle for midcentral (20%-60%) collisions. In contrast, near-side jet fragments are consistent with no suppression or dependence on trigger orientation with respect to the reaction plane. These observations are qualitatively consistent with a picture of little near-side parton energy loss either due to surface bias or fluctuations and increased away-side parton energy loss due to a long path through the medium. The away-side suppression as a function of reaction-plane angle is shown to be sensitive to both the energy loss mechanism and the space-time evolution of heavy-ion collisions.
Resumo:
We report the observation at the Relativistic Heavy Ion Collider of suppression of back-to-back correlations in the direct photon+jet channel in Au+Au relative to p+p collisions. Two-particle correlations of direct photon triggers with associated hadrons are obtained by statistical subtraction of the decay photon-hadron (gamma-h) background. The initial momentum of the away-side parton is tightly constrained, because the parton-photon pair exactly balance in momentum at leading order in perturbative quantum chromodynamics, making such correlations a powerful probe of the in-medium parton energy loss. The away-side nuclear suppression factor, I(AA), in central Au+Au collisions, is 0.32 +/- 0.12(stat)+/- 0.09(syst) for hadrons of 3 < p(T)(h)< 5 in coincidence with photons of 5 < p(T)(gamma)< 15 GeV/c. The suppression is comparable to that observed for high-p(T) single hadrons and dihadrons. The direct photon associated yields in p+p collisions scale approximately with the momentum balance, z(T)equivalent to p(T)(h)/p(T)(gamma), as expected for a measurement of the away-side parton fragmentation function. We compare to Au+Au collisions for which the momentum balance dependence of the nuclear modification should be sensitive to the path-length dependence of parton energy loss.
Resumo:
A numerical renormalization-group study of the conductance through a quantum wire containing noninteracting electrons side-coupled to a quantum dot is reported. The temperature and the dot-energy dependence of the conductance are examined in the light of a recently derived linear mapping between the temperature-dependent conductance and the universal function describing the conductance for the symmetric Anderson model of a quantum wire with an embedded quantum dot. Two conduction paths, one traversing the wire, the other a bypass through the quantum dot, are identified. A gate potential applied to the quantum wire is shown to control the current through the bypass. When the potential favors transport through the wire, the conductance in the Kondo regime rises from nearly zero at low temperatures to nearly ballistic at high temperatures. When it favors the dot, the pattern is reversed: the conductance decays from nearly ballistic to nearly zero. When comparable currents flow through the two channels, the conductance is nearly temperature independent in the Kondo regime, and Fano antiresonances in the fixed-temperature plots of the conductance as a function of the dot-energy signal interference between them. Throughout the Kondo regime and, at low temperatures, even in the mixed-valence regime, the numerical data are in excellent agreement with the universal mapping.
Resumo:
Background: The aim of the present study was to evaluate the protective effects of the 4-anilinoquinazoline derivative PD153035 on cardiac ischemia/reperfusion and mitochondrial function. Methodology/Principal Findings: Perfused rat hearts and cardiac HL-1 cells were used to determine cardioprotective effects of PD153035. Isolated rat heart mitochondria were studied to uncover mechanisms of cardioprotection. Nanomolar doses of PD153035 strongly protect against heart and cardiomyocyte damage induced by ischemia/reperfusion and cyanide/aglycemia. PD153035 did not alter oxidative phosphorylation, nor directly prevent Ca(2+) induced mitochondrial membrane permeability transition. The protective effect of PD153035 on HL-1 cells was also independent of AKT phosphorylation state. Interestingly, PD153035 activated K(+) transport in isolated mitochondria, in a manner prevented by ATP and 5-hydroxydecanoate, inhibitors of mitochondrial ATP-sensitive K(+) channels (mitoK(ATP)). 5-Hydroxydecanoate also inhibited the cardioprotective effect of PD153035 in cardiac HL-1 cells, demonstrating that this protection is dependent on mitoK(ATP) activation. Conclusions/Significance: We conclude that PD153035 is a potent cardioprotective compound and acts in a mechanism involving mitoK(ATP) activation.
Resumo:
During the past 40 years colluvial and alluvial deposits have been used in Brazil as good indicators of regional landscape sensitivity to Quaternary environmental changes. In spite of the low resolution of most of the continental sedimentary record, geomorphology and sedimentology may favor palaeoenvironmental interpretation when supported by independent proxy data. This paper presents results obtained from pedostratigraphic sequences, in near-valley head sites of southern Brazilian highlands, based on geomorphologic. sedimentologic, micromorphologic, isotopic and palynologic data. Results point to environmental changes, with ages that coincide with Marine Isotopic Stages (MIS) 5b; 3; 2 and 1. During the late Pleistocene, although under temperatures and precipitation lower than today, the local record points to relatively wet local environments, where shallow soil-water saturated zones contributed to erosion and sedimentation during periods of climatic change, as during the transition between MIS 2 and MIS 1. Late Pleistocene events with ages that coincide with the Northern Hemisphere Younger Dryas are also depicted. During the mid Holocene, slope-wash deposits suggest a climate drier than today, probably under the influence of seasonally contrasted precipitation regimes. The predominance of overland flow-related sedimentary deposits suggests an excess of precipitation over evaporation that influenced local palaeohydrology. This environmental condition seems to be recurrent and explains how slope morphology had influenced pedogenesis and sedimentation in the study area. Due to relative sensitiveness, resilience and short source-to-sink sedimentary pathways, near-valley head sites deserve further attention in Quaternary studies in the humid tropics. (c) 2008 Elsevier B.A. All rights reserved.
Resumo:
Superficial bottom samples were collected near diffusers of domestic sewage submarine outfalls at Araca and Saco da Capela, Sao Sebastiao Channel, Brazil. The goal of this study was to investigate the distribution and composition of live benthic foraminifera assemblages and integrate the results obtained with geochemical analyses to assess human-induced changes. According to the results obtained no environmental stress was observed near the Saco da Capela submarine outfall diffusers. The foraminifera assemblage is characterised by species typical of highly hydrodynamic environments, with well-oxygenated bottom waters and low nutrient contents. In contrast, near Araca submarine outfall, organic enrichment was denoted by high phosphorus, sulphur and, to a lesser extent, total organic carbon content. Harmful influences on foraminifera could be identified by low richness and specific diversity, as well as the predominance of detritivore feeder species, which are associated with higher organic matter flux and low oxygen in the interstitial pore water. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Obesity has been shown to impair myocardial performance. Nevertheless, the mechanisms underlying the participation of calcium (Ca(2+)) handling on cardiac dysfunction in obesity models remain unknown. L-type Ca(2+) channels and sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a), may contribute to the cardiac dysfunction induced by obesity. The purpose of this study was to investigate whether myocardial dysfunction in obese rats is related to decreased activity and/or expression of L-type Ca(2+) channels and SERCA2a. Male 30-day-old Wistar rats were fed standard (C) and alternately four palatable high-fat diets (Ob) for 15 weeks. Obesity was determined by adiposity index and comorbidities were evaluated. Myocardial function was evaluated in isolated left ventricle papillary muscles under basal conditions and after inotropic and lusitropic maneuvers. L-type Ca(2+) channels and SERCA2a activity were determined using specific blockers, while changes in the amount of channels were evaluated by Western blot analysis. Phospholamban (PLB) protein expression and the SERCA2a/PLB ratio were also determined. Compared with C rats, the Ob rats had increased body fat, adiposity index and several comorbidities. The Ob muscles developed similar baseline data, but myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca(2+) was compromised. The diltiazem promoted higher inhibition on developed tension in obese rats. In addition, there were no changes in the L-type Ca(2+) channel protein content and SERCA2a behavior (activity and expression). In conclusion, the myocardial dysfunction caused by obesity is related to L-type Ca(2+) channel activity impairment without significant changes in SERCA2a expression and function as well as L-type Ca(2+) protein levels. J. Cell. Physiol. 226: 2934-2942, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
Santos, VGF, Franchini, E, and Lima-Silva, AE. Relationship between attack and skipping in Taekwondo contests. J Strength Cond Res 25(6): 1743-1751, 2011-The purpose of this study was to determine the relationship between attack time (AT) and skipping time (ST) during the 2007 Taekwondo World Championship and 2008 Beijing Olympic Games. A total of 22 matches (65 rounds, 13 semifinals, and 8 finals) from the World Championship and 23 matches (63 rounds, 22 rounds with 16 athletes each and 1 quarterfinal round) from the Olympic Games, both in the male category, were assessed using time-motion analysis. The AT was considered as the total time during which the athlete attacked or tried to attack, whereas ST was the total time without attempting to attack. The ratio of AT to ST was similar to 1:7 based on the data pooled from the 2 competitions. The AT/ST ratio was significantly lower for the World Championship than for the Olympic Games (p <= 0.05). In the Olympic Games, no consistent differences across weight divisions were found. However, during the World Championship, the heavier weight divisions (>78 kg) exhibited a lower average AT, lower summed AT, lower attack numbers (ANs) and higher average ST than lighter weight divisions (<58 kg, p <= 0.05). For both competitions, the ST was lower, and the ANs and AT/ST ratio were higher in round 3 than in round 1 or 2. In conclusion, the results of this study suggest that matches in the Olympic Games were less cadenced than in the World Championship, but that in both competitions, the intensity of the match increased in round 3. Practically, these data suggest that coaches need to structure Taekwondo training sessions in a manner that allows the work/pause ratio to mirror the physical demand imposed during competitions.
Resumo:
In the present study, quasi-diabatic two-phase flow pattern visualizations and measurements of elongated bubble velocity, frequency and length were performed. The tests were run for R134a and R245fa evaporating in a stainless steel tube with diameter of 2.32 mm, mass velocities ranging from 50 to 600 kg/m(2) s and saturation temperatures of 22 degrees C, 31 degrees C and 41 degrees C. The tube was heated by applying a direct DC current to its surface. Images from a high-speed video-camera (8000 frames/s) obtained through a transparent tube just downstream the heated sections were used to identify the following flow patterns: bubbly, elongated bubbles, churn and annular flows. The visualized flow patterns were compared against the predictions provided by Barnea et al. (1983) [1], Felcar et al. (2007) [10], Revellin and Thome (2007) [3] and Ong and Thome (2009) [11]. From this comparison, it was found that the methods proposed by Felcar et al. (2007) [10] and Ong and Thome (2009) [1] predicted relatively well the present database. Additionally, elongated bubble velocities, frequencies and lengths were determined based on the analysis of high-speed videos. Results suggested that the elongated bubble velocity depends on mass velocity, vapor quality and saturation temperature. The bubble velocity increases with increasing mass velocity and vapor quality and decreases with increasing saturation temperature. Additionally, bubble velocity was correlated as linear functions of the two-phase superficial velocity. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Activation of the cephalosporin side-chain precursor to the corresponding CoA-thioester is an essential step for its incorporation into the P-lactam backbone. To identify an acyl-CoA ligase involved in activation of adipate, we searched in the genome database of Penicillium chrysogenum for putative structural genes encoding acyl-CoA ligases. Chemostat-based transcriptome analysis was used to identify the one presenting the highest expression level when cells were grown in the presence of adipate. Deletion of the gene renamed aclA, led to a 32% decreased specific rate of adipate consumption and a threefold reduction of adipoyl-6-aminopenicillanic acid levels, but did not affect penicillin V production. After overexpression in Escherichia coli, the purified protein was shown to have a broad substrate range including adipate. Finally, protein-fusion with cyan-fluorescent protein showed co-localization with microbody-borne acyl-transferase. Identification and functional characterization of aclA may aid in developing future metabolic engineering strategies for improving the production of different cephalosporins. (C) 2009 Elsevier Inc. All rights reserved.