854 resultados para sense of coherence
Resumo:
In the thesis I study various quantum coherence phenomena and create some of the foundations for a systematic coherence theory. So far, the approach to quantum coherence in science has been purely phenomenological. In my thesis I try to answer the question what quantum coherence is and how it should be approached within the framework of physics, the metatheory of physics and the terminology related to them. It is worth noticing that quantum coherence is a conserved quantity that can be exactly defined. I propose a way to define quantum coherence mathematically from the density matrix of the system. Degenerate quantum gases, i.e., Bose condensates and ultracold Fermi systems, form a good laboratory to study coherence, since their entropy is small and coherence is large, and thus they possess strong coherence phenomena. Concerning coherence phenomena in degenerate quantum gases, I concentrate in my thesis mainly on collective association from atoms to molecules, Rabi oscillations and decoherence. It appears that collective association and oscillations do not depend on the spin-statistics of particles. Moreover, I study the logical features of decoherence in closed systems via a simple spin-model. I argue that decoherence is a valid concept also in systems with a possibility to experience recoherence, i.e., Poincaré recurrences. Metatheoretically this is a remarkable result, since it justifies quantum cosmology: to study the whole universe (i.e., physical reality) purely quantum physically is meaningful and valid science, in which decoherence explains why the quantum physical universe appears to cosmologists and other scientists very classical-like. The study of the logical structure of closed systems also reveals that complex enough closed (physical) systems obey a principle that is similar to Gödel's incompleteness theorem of logic. According to the theorem it is impossible to describe completely a closed system within the system, and the inside and outside descriptions of the system can be remarkably different. Via understanding this feature it may be possible to comprehend coarse-graining better and to define uniquely the mutual entanglement of quantum systems.
Resumo:
In order to further develop the logic of service, value creation, value co-creation and value have to be formally and rigorously defined, so that the nature, content and locus of value and the roles of service providers and customers in value creation can be unambiguously assessed. In the present article, following the underpinning logic of value-in-use, it is demonstrated that in order to achieve this, value creation is best defined as the customer’s creation of value-in-use. The analysis shows that the firm’s and customer’s processes and activities can be divided into a provider sphere, closed for the customer, and a customer sphere, closed for the firm. Value creation occurs in the customer sphere, whereas firms in the provider sphere facilitate value creation by producing resources and processes which represent potential value or expected value-in use for their customers. By getting access to the closed customer sphere, firms can create a joint value sphere and engage in customers’ value creation as co-creators of value with them. This approach establishes a theoretically sound foundation for understanding value creation in service logic, and enables meaningful managerial implications, for example as to what is required for co-creation of value, and also further theoretical elaborations.
Resumo:
Recently it has been discovered---contrary to expectations of physicists as well as biologists---that the energy transport during photosynthesis, from the chlorophyll pigment that captures the photon to the reaction centre where glucose is synthesised from carbon dioxide and water, is highly coherent even at ambient temperature and in the cellular environment. This process and the key molecular ingredients that it depends on are described. By looking at the process from the computer science view-point, we can study what has been optimised and how. A spatial search algorithmic model based on robust features of wave dynamics is presented.
Resumo:
Plants produce volatile organic compounds (VOCs) in a variety of contexts that include response to abiotic and biotic stresses, attraction of pollinators and parasitoids, and repulsion of herbivores. Some of these VOCs may also exhibit diel variation in emission. In Ficus racemosa, we examined variation in VOCs released by fig syconia throughout syconium development and between day and night. Syconia are globular enclosed inflorescences that serve as developing nurseries for pollinating and parasitic fig wasps. Syconia are attacked by gallers early in their development, serviced by pollinators in mid phase, and are attractive to parasitoids in response to the development of gallers at later stages. VOC bouquets of the different development phases of the syconium were distinctive, as were their day and night VOC profiles. VOCs such as alpha-muurolene were characteristic of the pollen-receptive diurnal phase, and may serve to attract the diurnally-active pollinating wasps. Diel patterns of release of volatiles could not be correlated with their predicted volatility as determined by Henry's law constants at ambient temperatures. Therefore, factors other than Henry's law constant such as stomatal conductance or VOC synthesis must explain diel variation in VOC emission. A novel use of weighted gene co-expression network analysis (WGCNA) on the volatilome resulted in seven distinct modules of co-emitted VOCs that could be interpreted on the basis of syconium ecology. Some modules were characterized by the response of fig syconia to early galling by parasitic wasps and consisted largely of green leaf volatiles (GLVs). Other modules, that could be characterized by a combination of syconia response to oviposition and tissue feeding by larvae of herbivorous galler pollinators as well as of parasitized wasps, consisted largely of putative herbivore-induced plant volatiles (HIPVs). We demonstrated the usefulness of WGCNA analysis of the volatilome in making sense of the scents produced by the syconia at different stages and diel phases of their development.
Resumo:
G-Quadruplexes occupy important regulatory regions in the genome. DNA G-quadruplexes in the promoter regions and RNA quadruplexes in the UTRs (untranslated regions) have been individually studied and variously implicated at different regulatory levels of gene expression. However, the formation of G-quadruplexes in the sense and antisense strands and their corresponding roles in gene regulation have not been studied in much detail. In the present study, we have elucidated the effect of strand asymmetry in this context. Using biophysical methods, we have demonstrated the formation of stable G-quadruplex structure in vitro using CD and UV melting. Additionally, ITC was employed to demonstrate that a previously reported selective G-quadruplex ligand was able to bind and stabilize the G-quadruplex in the present sequence. Further, we have shown using reporter constructs that although the DNA G-quadruplex in either strand can reduce translation efficiency, transcriptional regulation differs when G-quadruplex is present in the sense or antisense strand. We demonstrate that the G-quadruplex motif in the antisense strand substantially inhibits transcription, while when in the sense strand, it does not affect transcription, although it does ultimately reduce translation. Further, it is also shown that the G-quadruplex stabilizing ligand can enhance this asymmetric transcription regulation as a result of the increased stabilization of the G-quadruplex.
Resumo:
Part I of the thesis describes the olfactory searching and scanning behaviors of rats in a wind tunnel, and a detailed movement analysis of terrestrial arthropod olfactory scanning behavior. Olfactory scanning behaviors in rats may be a behavioral correlate to hippocampal place cell activity.
Part II focuses on the organization of olfactory perception, what it suggests about a natural order for chemicals in the environment, and what this in tum suggests about the organization of the olfactory system. A model of odor quality space (analogous to the "color wheel") is presented. This model defines relationships between odor qualities perceived by human subjects based on a quantitative similarity measure. Compounds containing Carbon, Nitrogen, or Sulfur elicit odors that are contiguous in this odor representation, which thus allows one to predict the broad class of odor qualities a compound is likely to elicit. Based on these findings, a natural organization for olfactory stimuli is hypothesized: the order provided by the metabolic process. This hypothesis is tested by comparing compounds that are structurally similar, perceptually similar, and metabolically similar in a psychophysical cross-adaptation paradigm. Metabolically similar compounds consistently evoked shifts in odor quality and intensity under cross-adaptation, while compounds that were structurally similar or perceptually similar did not. This suggests that the olfactory system may process metabolically similar compounds using the same neural pathways, and that metabolic similarity may be the fundamental metric about which olfactory processing is organized. In other words, the olfactory system may be organized around a biological basis.
The idea of a biological basis for olfactory perception represents a shift in how olfaction is understood. The biological view has predictive power while the current chemical view does not, and the biological view provides explanations for some of the most basic questions in olfaction, that are unanswered in the chemical view. Existing data do not disprove a biological view, and are consistent with basic hypotheses that arise from this viewpoint.
Resumo:
We study the change in the degree of coherence of partially coherent electromagnetic beam (so called electromagnetic Gaussian Schell-model beam). It is shown analytically that with a fixed set of source parameters and under a particular atmospheric turbulence model, an electromagnetic Gaussian Schell-model beam propagating through atmospheric turbulence reaches its maximum value of coherence after the beam propagates a particular distance, and the effective width of the spectral degree of coherence also has its maximum value. This phenomenon is independent of the used turbulence model. The results are illustrated by numerical curves. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
An analytical formula for the cross-spectral density matrix of the electric field of anisotropic electromagnetic Gaussian-Schell model beams propagating in free space is derived by using a tensor method. The effects of coherence on those beams are studied. It is shown that two anisotropic stochastic electromagnetic beams that propagate from the source plane z = 0 into the half-space z > 0 may have different beam shapes (i.e., spectral density) and states of polarization in the half-space, even though they have the same beam shape and states of polarization in the source plane. This fact is due to a difference in the coherence properties of the field in the source plane. (C) 2007 Optical Society of America.
Resumo:
Is an interactive new media art installation that explores how the sharing of images, normally hidden on mobile phones, can reveal more about people's sense of place and this ultimately shared experience. Traditional views on sense of place, as exemplified by Wagner (1972) and Relph (1976), characterise the experience as a fusion of meaning, act and context. Indeed, Relph suggests that it is not just the identity of a place that is important, but also the identity that a person or group has with that place, in particular whether they are experiencing it as an ‘insider’ or ‘outsider’. This work stimulates debate concerning the impact of technology on sense of place. Technology offers a number of bridges between the real and virtual worlds, but in so doing places an increased tension on the sense of place and subsequently the identity of the individual. This, coupled with the increased use of camera phones, has enabled the documentation of all aspects of our lives, the things we do, the objects we encounter and the places we inhabit. The installation taps into these hidden electronic resources by letting people share their sense of place associated with a large scale event. The work explores the changing nature of the sense of place of performers, visitors and residents over the duration of the event. Interaction with the installation will transform the viewer into performer, echoing Relph’s insider-outsider dichotomy
Resumo:
BACKGROUND: Implementing new practices, such as health information technology (HIT), is often difficult due to the disruption of the highly coordinated, interdependent processes (e.g., information exchange, communication, relationships) of providing care in hospitals. Thus, HIT implementation may occur slowly as staff members observe and make sense of unexpected disruptions in care. As a critical organizational function, sensemaking, defined as the social process of searching for answers and meaning which drive action, leads to unified understanding, learning, and effective problem solving -- strategies that studies have linked to successful change. Project teamwork is a change strategy increasingly used by hospitals that facilitates sensemaking by providing a formal mechanism for team members to share ideas, construct the meaning of events, and take next actions. METHODS: In this longitudinal case study, we aim to examine project teams' sensemaking and action as the team prepares to implement new information technology in a tiertiary care hospital. Based on management and healthcare literature on HIT implementation and project teamwork, we chose sensemaking as an alternative to traditional models for understanding organizational change and teamwork. Our methods choices are derived from this conceptual framework. Data on project team interactions will be prospectively collected through direct observation and organizational document review. Through qualitative methods, we will identify sensemaking patterns and explore variation in sensemaking across teams. Participant demographics will be used to explore variation in sensemaking patterns. DISCUSSION: Outcomes of this research will be new knowledge about sensemaking patterns of project teams, such as: the antecedents and consequences of the ongoing, evolutionary, social process of implementing HIT; the internal and external factors that influence the project team, including team composition, team member interaction, and interaction between the project team and the larger organization; the ways in which internal and external factors influence project team processes; and the ways in which project team processes facilitate team task accomplishment. These findings will lead to new methods of implementing HIT in hospitals.
Resumo:
We examined the coherence of trauma memories in a trauma-exposed community sample of 30 adults with and 30 without posttraumatic stress disorder. The groups had similar categories of traumas and were matched on multiple factors that could affect the coherence of memories. We compared the transcribed oral trauma memories of participants with their most important and most positive memories. A comprehensive set of 28 measures of coherence including 3 ratings by the participants, 7 ratings by outside raters, and 18 computer-scored measures, provided a variety of approaches to defining and measuring coherence. A multivariate analysis of variance indicated differences in coherence among the trauma, important, and positive memories, but not between the diagnostic groups or their interaction with these memory types. Most differences were small in magnitude; in some cases, the trauma memories were more, rather than less, coherent than the control memories. Where differences existed, the results agreed with the existing literature, suggesting that factors other than the incoherence of trauma memories are most likely to be central to the maintenance of posttraumatic stress disorder and thus its treatment.