892 resultados para selenium supplementation
Resumo:
We described herein the use of imidazolium ionic liquids [bmim]PF(6) and [bmim]BF(4) in the selective, metal and catalyst-free synthesis of unsymmetrical diaryl selenides by electrophilic substitution in arylboron reagents with arylselenium halides (Cl and Br) at room temperature. This is a general substitution reaction and it was performed with arylboronic acids or potassium aryltrifluoroborates bearing electron-withdrawing or electron-donating groups, affording the corresponding diaryl selenides in good to excellent yields. The ionic liquid [bmim][PF(6)] was easily recovered and utilized for further substitution reactions.
Resumo:
BACKGROUND: Age-related cataracts (ARCs) are an important cause of blindness in developing countries. Although antioxidants may be part of the body's defense to prevent ARC, environmental contaminants may contribute to cataractogenesis. In fish-eating populations of the lower Tapajos region, elevated exposure to mercury (Hg) has been reported, and blood levels of selenium (Se) range from normal to very high (> 1,000 mu g/L). OBJECTIVES: We examined ARCs in relation to these elements among adults (>= 40 years of age) from 12 riverside communities. METHODS: Participants (n = 211) provided blood samples and underwent an extensive ocular examination. Inductively coupled plasma mass spectrometry was used to assess Hg and Se in blood and plasma. RESULTS: One-third (n = 69; 32.7%) of the participants had ARC. Lower plasma Se (P-Se; < 25th percentile, 110 mu g/L) and higher blood Hg (B-Hg; >= 25th percentile, 25 mu g/L) were associated with a higher prevalence odds ratio (POR) of ARC [adjusted POR (95% confidence interval), 2.69 (1.11-6.56) and 4.45 (1.43-13.83), respectively]. Among participants with high P-Se, we observed a positive but nonsignificant association with high B-Hg exposure, whereas among those with low B-Hg, we observed no association for P-Se. However, compared with the optimum situation (high P-Se, low B-Hg), the POR for those with low P-Se and high B-Hg was 16.4 (3.0-87.9). This finding suggests a synergistic effect. CONCLUSION: Our results suggest that persons in this population with elevated Hg, the cataractogenic effects of Hg may be offset by Se. Because of the relatively small sample size and possible confounding by other dietary nutrients, additional studies with sufficient power to assess multiple nutrient and toxic interactions are required to confirm these findings.
Resumo:
This study evaluated the effects of high-dose of short-term creatine supplementation (5g.kg(-1). day(-1) to 1 week) and long-term creatine supplementation (1g.kg(-1). day(-1) to 4-8 weeks) on kidney and liver structure and function of sedentary and exercised Wistar rats ( Exercise sessions consisted of swimming at 80% of maximal work load supported during 5 days per week with daily sessions of 60 minutes throughout the duration of the supplementation). Seventy-two animals ( 245 +/- 5g) were divided into four groups (n = 18): control diet Sedentary ( SED), Creatine diet Sedentary (CRE), control diet Exercised (EXE), and Creatine diet Exercised (EXECRE). Histological and blood biochemical studies were performed after one, four, and eight weeks of creatine supplementation and exercise ( n = 6). No differences were found when comparing SED, EXE and EXECRE groups for kidney and liver structure and function at one, four and eight weeks. However, the CRE group showed higher levels of creatinine (1.1 +/- 0.2 vs. 0.4 +/- 0.1 mg.dl(-1); p < 0.05), and urea ( 37 +/- 3 vs. 19 +/- 1 mg. dl(-1); p < 0.05) when compared with all others groups at four and eight weeks. At eight weeks, the CRE group presented increased levels of ALT (41 +/- 7 vs. 23 +/- 7 U.L(-1); p < 0.05), AST (89 +/- 6 vs. 62 +/- 5 U. L(-1); p < 0.05), GGT (8.0 +/- 0.9 vs. 3.9 +/- 1.0 U. L(-1); p < 0.05), and AP (125 +/- 10 vs. 69 +/- 9 U. L(-1); p < 0.05) also when compared with all others groups. Moreover, the CRE group demonstrated some structural alterations indicating renal and hepatic damage at four and eight weeks, respectively. These results suggest that long-term creatine supplementation (up to 4-8 weeks) may adversely affect kidney and liver structure and function of sedentary but not of exercised rats.
Resumo:
Background: The oocyte ability to undergo successful fertilization, cleavage and embryonic development depends on meiotic maturation and developmental competence acquisition. In vitro maturation (IVM) protocols currently use eCG, hCG or a combination of both, the effect of these gonadotrophins during IVM and subsequent embryonic development is still controversial. Several media have been used for IVM of porcine oocytes: TCM199, Whitten's and NCSU23 have also been shown to support pig oocyte IVM. This study was designed to determine the effect of hormonal supplementation period and maturation media during in vitro maturation of pig oocytes (1) and subsequent embryonic development (2). Materials, Methods & Results: Oocytes with intact cumulus oophurus layers and homogeneous cytoplasm were collected from prebubertal gilts. IVM was subjected in NCSU23, TCM199 or Whitten's media supplemented with 10 IU/mL eCG and 10 IU/mL hCG for the first 24 or 48 h of IVM. In each replicate the oocytes were fixed every 4 h from 32 to 48 h IVM or the past 48 h after IVM, oocytes were fertilized in vitro in mTBM medium for six hours and cultured in NCSU23 medium for nine days. Cleavage, blastocyst and hatching rates were evaluated at 48 h (day 2), 168 h (day 7) and 216 h (day 9), respectively. The addition of eCG and hCG during the first 24 h IVM increased the proportion of oocytes that reached MII stage at 44 h of maturation in NCSU23 medium. This effect was also observed in Whitten medium at 44 and 48 h (P < 0.05). However, it was not observed in the TCM199 medium. No effect of maturation medium on oocyte nuclear maturation (P > 0.05) was observed in oocytes matured in the presence of eCG and hCG during the first 24 h IVM or during 48 h IVM. A progressive increase of maturation indexes was observed on oocytes matured with hormonal supplementation in Whitten media for 24 h. Higher indexes were obtained at 44 and 48 h. When NCSU23 media was used, no difference after 36 h of maturation was observed. The same result was observed in TCM199. A progressive increase of maturation indexes was observed on oocytes matured with hormonal supplementation for 48 h in Whitten media. Higher indexes were obtained in 36 and 40 h. When NCSU23 or TCM199 were used, no difference was observed. No effect of IVM media on the percentage of fertilized oocytes and polyspermic oocytes or number of spermatozoa per fertilized oocytes was observed. Also, no effect of IVM media on cleavage and blastocyst rates was seen. However, the proportion of hatched blastocysts was lower in NCSU23 compared to Whitten or TCM199. Discussion: Similar results were reported by Marques et al. [13], that it no differences between hormonal supplementation for 22 or 44 h were observed. Therefore, more studies are needed to elucidate the role of these hormones in nuclear in vitro maturation in pig oocytes. In conclusion, no effect of maturation media on meiotic progression was observed. However, the proportion of oocytes that reached metaphase II (MII) stage was higher when eCG + hCG were added for 24 h than 48 h mainly at the 44 h of maturation. In addition, no differences were observed in cleavage and blastocyst rates of the cultured embryos. However, embryos cultured in NCSU23 showed lower rates of hatching compared to other media. These results indicated no effect of maturation media on the fertilization and embryonic development even in the presence of cysteine, PFF and EGF, except for hatched embryos that these rates were lower in NCSU23.
Resumo:
Background: Studies suggest that leucine supplementation (LS) has a therapeutic potential to prevent obesity and to promote glucose homeostasis. Furthermore, regular physical exercise is a widely accepted strategy for body weight maintenance and also for the prevention of obesity. The aim of this study was to determine the effect of chronic LS alone or combined with endurance training (ET) as potential approaches for reversing the insulin resistance and obesity induced by a high-fat diet (HFD) in rats. Methods: Forty-seven rats were randomly divided into two groups. Animals were fed a control diet-low fat (n = 10) or HFD (n = 37). After 15 weeks on HFD, all rats received the control diet-low fat and were randomly divided according to treatment: reference (REF), LS, ET, and LS+ET (n = 7-8 rats per group). After 6 weeks of treatment, the animals were sacrificed and body composition, fat cell volume, and serum concentrations of total cholesterol, HDL-cholesterol, triacylglycerol, glucose, adiponectin, leptin and tumor necrosis factor-alpha (TNF-alpha) were analyzed. Results: At the end of the sixth week of treatment, there was no significant difference in body weight between the REF, LS, ET and LS+ET groups. However, ET increased lean body mass in rats (P = 0.019). In addition, ET was more effective than LS in reducing adiposity (P = 0.019), serum insulin (P = 0.022) and TNF-alpha (P = 0.044). Conversely, LS increased serum adiponectin (P = 0.021) levels and reduced serum total cholesterol concentration (P = 0.042). Conclusions: The results showed that LS had no beneficial effects on insulin sensitivity or adiposity in previously obese rats. On the other hand, LS was effective in increasing adiponectin levels and in reducing total cholesterol concentration.
Resumo:
beta-Hydroxy-beta-methylbutyrate (HM beta) supplementation is used to treat cancer, sepsis and exercise-induced muscle damage. However, its effects on animal and human health and the consequences of this treatment in other tissues (e. g., fat and liver) have not been examined. The purpose of this study was to evaluate the effects of HM beta supplementation on skeletal muscle hypertrophy and the expression of proteins involved in insulin signalling. Rats were treated with HM beta (320 mg/kg body weight) or saline for one month. The skeletal muscle hypertrophy and insulin signalling were evaluated by western blotting, and hormonal concentrations were evaluated using ELISAs. HM beta supplementation induced muscle hypertrophy in the extensor digitorum longus (EDL) and soleus muscles and increased serum insulin levels, the expression of the mammalian target of rapamycin (mTOR) and phosphorylation of p70S6K in the EDL muscle. Expression of the insulin receptor was increased only in liver. Thus, our results suggest that HM beta supplementation can be used to increase muscle mass without adverse health effects.
Resumo:
The low-lying doublet and quartet electronic states of the species SeF correlating with the first dissociation channel are investigated theoretically at a high-level of electronic correlation treatment, namely, the complete active space self-consistent field/multireference single and double excitations configuration interaction (CASSCF/MRSDCI) using a quintuple-zeta quality basis set including a relativistic effective core potential for the selenium atom. Potential energy curves for (Lambda+S) states and the corresponding spectroscopic properties are derived that allows for an unambiguous assignment of the only spectrum known experimentally as due to a spin-forbidden X (2)Pi-a (4)Sigma(-) transition, and not a A (2)Pi-X (2)Pi transition as assumed so far. For the bound excited doublets, yet unknown experimentally, this study is the first theoretical characterization of their spectroscopic properties. Also the spin-orbit coupling constant function for the X (2)Pi state is derived as well as the spin-orbit coupling matrix element between the X (2)Pi and a (4)Sigma(-) states. Dipole moment functions and vibrationally averaged dipole moments show SeF to be a very polar species. An overview of the lowest-lying spin-orbit (Omega) states completes this description. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3426315]
Resumo:
omega-Transaminases have been evaluated as biocatalysts in the reductive amination of organoselenium acetophenones to the corresponding amines, and in the kinetic resolution of racemic organoselenium amines. Kinetic resolution proved to be more efficient than the asymmetric reductive amination. By using these methodologies we were able to obtain both amine enantiomers in high enantiomeric excess (up to 99%). Derivatives of the obtained optically pure o-selenium 1-phenylethyl amine were evaluated as ligands in the palladium-catalyzed asymmetric alkylation, giving the alkylated product in up to 99% ee.
Resumo:
The in vivo bioavailability of Se was investigated in enriched Pleurotus ostreatus mushrooms. A bioavailability study was performed using 64 Wistar male rats separated in 8 groups and fed with different diets: without Se, with mushrooms without Se, with enriched mushrooms containing 0.15, 0.30 or 0.45 mg kg(-1) Se and a normal diet containing 0.15 mg kg(-1) of Se using sodium selenate. The experiment was performed in two periods: depletion (14 days) and repletion (21 days), according to the Association of Official Analytical Chemists. After five weeks, the rats were sacrificed under carbon dioxide, and blood was drawn by heart puncture. Blood plasma was separated by centrifugation. The total Se concentration in the plasma of rats fed with enriched mushrooms was higher than in rats fed with a normal diet containing sodium selenate. The plasma protein profiles were obtained using size exclusion chromatography (SEC) and UV detectors. Aliquots of effluents (0.5 mL per minute) were collected throughout in the end of the chomatographic column. However, Se was determined by graphite furnace atomic absorption spectrometry (GF AAS) only in the aliquots where proteins were detected by SEC-UV. The plasma protein pro. le of rats fed with different diets was similar. The highest Se concentration was observed in a peptide presenting 8 kDa. Furthermore, the higher Se concentration in this peptide was obtained for rats fed with a diet using enriched mushrooms (7 mu g L(-1) Se) compared to other diets (2-5 mu g L(-1) Se). These results showed that Se-enriched mushrooms can be considered as an alternative Se food source for humans, due to their high bioavailability.
Resumo:
Selenium detection limits of INAA are normally above its concentration in most biological materials. Gamma-gamma coincidence methodology can be used to improve the detection limits and uncertainties in the determination of selenium. Here, some edible parts of plants were measured using a HPGe detector equipped with a NaI(Tl) active shielding, producing spectra both in normal and coincidence modes. The results presented the reduction of the detection limits of selenium by a factor of 2 to 3 times and improvement in the uncertainty of up to 2 times.
Resumo:
Aims. - The present study evaluated the effects of BCAA supplementation on exercise performance of pregnant rats. Methods. - In order to assess these effects, Wistar rats were divided into four groups: sedentary not-supplemented (SNS, n = 8); sedentary supplemented (SS, n = 8); trained not-supplemented (TNS, n = 8) and trained supplemented (TS, n = 8). All groups were submitted to the endurance test until exhaustion (ET) and post-effort lactate (PEL) determination before pregnancy (ET-B and PEL-B) and at the 19th day of pregnancy (ET-19 and PEL-19). Results. - The endurance training significantly increased the ET time to exhaustion (p<0.05). Regardless of BCAA supplementation, both endurance trained groups (TS and TNS) showed a longer time to exhaustion, assessed by ET, compared with the sedentary groups (SS and SNS) (p < 0.05). In the TNS, ET-19 time to exhaustion decreased when compared with the period before pregnancy. On the other hand, ET-19 time to exhaustion was not affected in the TS at the end of the pregnancy period. In addition, TS showed a marked PEL-19 reduction when compared with PEL-B. The data presented herein suggest that BCAA supplementation plays an ergogenic role in the maintenance of exercise performance during pregnancy in rats. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
ARTIOLI, G. G., B. GUALANO, A. SMITH, J. STOUT, and A. H. LANCHA, JR. Role of beta-Alanine Supplementation on Muscle Carnosine and Exercise Performance. Med. Sci. Sports Exerc., Vol. 42, No. 6, pp. 1162-1173, 2010. In this narrative review, we present and discuss the current knowledge available on carnosine and beta-alanine metabolism as well as the effects of beta-alanine supplementation on exercise performance. Intramuscular acidosis has been attributed to be one of the main causes of fatigue during intense exercise. Carnosine has been shown to play a significant role in muscle pH regulation. Carnosine is synthesized in skeletal muscle from the amino acids L-histidine and beta-alanine. The rate-limiting factor of carnosine synthesis is beta-alanine availability. Supplementation with beta-alanine has been shown to increase muscle carnosine content and therefore total muscle buffer capacity, with the potential to elicit improvements in physical performance during high-intensity exercise. Studies on beta-alanine supplementation and exercise performance have demonstrated improvements in performance during multiple bouts of high-intensity exercise and in single bouts of exercise lasting more than 60 s. Similarly, beta-alanine supplementation has been shown to delay the onset of neuromuscular fatigue. Although beta-alanine does not improve maximal strength or (V) over dotO(2max), some aspects of endurance performance, such as anaerobic threshold and time to exhaustion, can be enhanced. Symptoms of paresthesia may be observed if a single dose higher than 800 mg is ingested. The symptoms, however, are transient and related to the increase in plasma concentration. They can be prevented by using controlled release capsules and smaller dosing strategies. No important side effect was related to the use of this amino acid so far. In conclusion, beta-alanine supplementation seems to be a safe nutritional strategy capable of improving high-intensity anaerobic performance.
Resumo:
The consumption of protein supplements containing amino acids is increasing around the world Aspartate (Asp) and asparagine (Asn) are amino acids metabolized by skeletal muscle. This metabolism involves biochemical pathways that are involved in increasing Krebs cycle activity via anaplerotic reactions. resulting in higher glutamine concentrations. A connection between amino acid supplementation, glycogen concentration, and glucose uptake has been previously demonstrated. The purpose of this study was to evaluate the effect of asp and Asn Supplementation on glucose uptake in rats using three different glycogen concentrations The results indicate that Asp and Asn supplementation in rats with high glycogen concentrations (fed state) further increased the glycogen concentration in the muscle, and decreased in vitro 2-deoxyglucose (a glucose analog.) uptake by the muscle at maximal insulin concentrations When animals had a medium glycogen concentration (consumed lard for 3 days). glucose uptake was higher in the supplemented group at sub-maximal insulin concentrations. We conclude that supplementation of Asp and Asn reduced glucose transport in rat muscle only at higher levels of glycogen. The ingestion of lard for 3 days changed the responsiveness and sensitivity to insulin, and that group had higher levels of insulin sensivity with Asp and Asn supplementation. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Creatine (CR) supplementation is commonly used by athletes. However, its effects on renal function remain controversial. The aim of this study was to evaluate the effects of creatine supplementation on renal function in healthy sedentary males (18-35 years old) submitted to exercise training. A randomized, double-blind, placebo-controlled trial was performed. Subjects (n = 18) were randomly allocated to receive treatment with either creatine (CR) (similar to 10 g day(-1) over 3 months) or placebo (PL) (dextrose). All subjects undertook moderate intensity aerobic training, in three 40-min sessions per week, during 3 months. Serum creatinine, serum and urinary sodium and potassium were determined at baseline and at the end of the study. Cystatin C was assessed prior to training (PRE), after 4 (POST 4) and 12 weeks (POST 12). Cystatin C levels (mg L-1) (PRE CR: 0.82 +/- 0.09; PL: 0.88 +/- 0.07 vs. POST 12 CR: 0.71 +/- 0.06; PL: 0.75 +/- 0.09, P = 0.0001) were decreased over time, suggesting an increase in glomerular filtration rate. Serum creatinine decreased with training in PL but was unchanged with training in CR. No significant differences were observed within or between groups in other parameters investigated. The decrease in cystatin C indicates that high-dose creatine supplementation over 3 months does not provoke any renal dysfunction in healthy males undergoing aerobic training. In addition, the results suggest that moderate aerobic training per se may improve renal function.
Resumo:
Recent findings have indicated that creatine supplementation may affect glucose metabolism. This study aimed to examine the effects of creatine supplementation, combined with aerobic training, on glucose tolerance in sedentary healthy male. Subjects (n = 22) were randomly divided in two groups and were allocated to receive treatment with either creatine (CT) (similar to 10g .day over three months) or placebo (PT) (dextrose). Administration of treatments was double blind. Both groups underwent moderate aerobic training. An oral glucose tolerance test (OGTT) was performed and both fasting plasma insulin and the homeostasis model assessment (HOMA) index were assessed at the start, and after four, eight and twelve weeks. CT demonstrated significant decrease in OGTT area under the curve compared to PT (P = 0.034). There were no differences between groups or over time in fasting insulin or HOMA. The results suggest that creatine supplementation, combined with aerobic training, can improve glucose tolerance but does not affect insulin sensitivity, and may warrant further investigation with diabetic subjects.