981 resultados para sea level change


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under increasing greenhouse gas concentrations, ocean heat uptake moderates the rate of climate change, and thermal expansion makes a substantial contribution to sea level rise. In this paper we quantify the differences in projections among atmosphere-ocean general circulation models of the Coupled Model Intercomparison Project in terms of transient climate response, ocean heat uptake efficiency and expansion efficiency of heat. The CMIP3 and CMIP5 ensembles have statistically indistinguishable distributions in these parameters. The ocean heat uptake efficiency varies by a factor of two across the models, explaining about 50% of the spread in ocean heat uptake in CMIP5 models with CO2 increasing at 1%/year. It correlates with the ocean global-mean vertical profiles both of temperature and of temperature change, and comparison with observations suggests the models may overestimate ocean heat uptake and underestimate surface warming, because their stratification is too weak. The models agree on the location of maxima of shallow ocean heat uptake (above 700 m) in the Southern Ocean and the North Atlantic, and on deep ocean heat uptake (below 2000 m) in areas of the Southern Ocean, in some places amounting to 40% of the top-to-bottom integral in the CMIP3 SRES A1B scenario. The Southern Ocean dominates global ocean heat uptake; consequently the eddy-induced thickness diffusivity parameter, which is particularly influential in the Southern Ocean, correlates with the ocean heat uptake efficiency. The thermal expansion produced by ocean heat uptake is 0.12 m YJ−1, with an uncertainty of about 10% (1 YJ = 1024 J).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Draft Document. Presentation of maps produced from digital LIDAR elevation grids and contoured at 1 ft. levels illustration sea level rise for the Cutler Bay Township in Miami-Dade County.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change effects are expected to substantially raise the average sea level. It is widely assumed that this raise will have a severe adverse impact on saltwater intrusion processes in coastal aquifers. In this study we hypothesize that a natural mechanism, identified as the “lifting process” has the potential to mitigate or in some cases completely reverse the adverse intrusion effects induced by sea-level rise. A detailed numerical study using the MODFLOW-family computer code SEAWAT, was completed to test this hypothesis and to understand the effects of this lifting process in both confined and unconfined systems. Our conceptual simulation results show that if the ambient recharge remains constant, the sea-level rise will have no long-term impact (i.e., it will not affect the steady-state salt wedge) on confined aquifers. Our transient confined flow simulations show a self-reversal mechanism where the wedge which will initially intrude into the formation due to the sea-level rise would be naturally driven back to the original position. In unconfined systems, the lifting process would have a lesser influence due to changes in the value of effective transmissivity. A detailed sensitivity analysis was also completed to understand the sensitivity of this self-reversal effect to various aquifer parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is increasingly apparent that sea-level data (e.g. microfossil transfer functions, dated coral microatolls and direct observations from satellite and tidal gauges) vary temporally and spatially at regional to local scales, thus limiting our ability to model future sea-level rise for many regions. Understanding sealevel response at ‘far-field’ locations at regional scales is fundamental for formulating more relevant sea-level rise susceptibility models within these regions under future global change projections. Fossil corals and reefs in particular are valuable tools for reconstructing past sea levels and possible environmental phase shifts beyond the temporal constraints of instrumental records. This study used abundant surface geochronological data based on in situ subfossil corals and precise elevation surveys to determine previous sea level in Moreton Bay, eastern Australia, a far-field site. A total of 64 U-Th dates show that relative sea level was at least 1.1 m above modern lowest astronomical tide (LAT) from at least ˜6600 cal. yr BP. Furthermore, a rapid synchronous demise in coral reef growth occurred in Moreton Bay ˜5800 cal. yr BP, coinciding with reported reef hiatus periods in other areas around the Indo-Pacific region. Evaluating past reef growth patterns and phases allows for a better interpretation of anthropogenic forcing versus natural environmental/climatic cycles that effect reef formation and demise at all scales and may allow better prediction of reef response to future global change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of extreme water levels along low-lying, highly populated and/or developed coastlines can lead to considerable loss of life and billions of dollars of damage to coastal infrastructure. Therefore it is vitally important that the exceedance probabilities of extreme water levels are accurately evaluated to inform risk-based flood management, engineering and future land-use planning. This ensures the risk of catastrophic structural failures due to under-design or expensive wastes due to over-design are minimised. This paper estimates for the first time present day extreme water level exceedence probabilities around the whole coastline of Australia. A high-resolution depth averaged hydrodynamic model has been configured for the Australian continental shelf region and has been forced with tidal levels from a global tidal model and meteorological fields from a global reanalysis to generate a 61-year hindcast of water levels. Output from this model has been successfully validated against measurements from 30 tide gauge sites. At each numeric coastal grid point, extreme value distributions have been fitted to the derived time series of annual maxima and the several largest water levels each year to estimate exceedence probabilities. This provides a reliable estimate of water level probabilities around southern Australia; a region mainly impacted by extra-tropical cyclones. However, as the meteorological forcing used only weakly includes the effects of tropical cyclones, extreme water level probabilities are underestimated around the western, northern and north-eastern Australian coastline. In a companion paper we build on the work presented here and more accurately include tropical cyclone-induced surges in the estimation of extreme water level. The multi-decadal hindcast generated here has been used primarily to estimate extreme water level exceedance probabilities but could be used more widely in the future for a variety of other research and practical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been predicted that sea level will rise about 0.8 m by 2100. Consequently, seawater can intrude into the coastal aquifers and change the level of groundwater table. A raise in groundwater table due to seawater intrusion threats the coastal infrastructure such as road pavements. The mechanical properties of subgrade materials will change due to elevated rise of groundwater table, leading to pavement weakening and decreasing the subgrade strength and stiffness. This paper presents an assessment of the vulnerability of subgrade in coastal areas to change in groundwater table due to sea-level rise. A simple bathtub approach is applied for estimating the groundwater level changes according to sea-level rise. Then the effect of groundwater level changes on the soil water content (SWC) of a single column of fine-sand soil is simulated using MIKE SHE. The impact of an increase in moisture content on subgrade strength/stiffness is assessed for a number of scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was conducted to assess the vulnerability of coastal road infrastructures due to climate change induced sea level rise and extreme weather conditions through the estimation of road subgrade strength reduction as a result of changes in soil moisture content. The study area located in the Gold Coast, Australia highlighted that the risk is significant. In wet seasons or areas with wet condition, the groundwater table is already high, so even a small change in the groundwater table can raise the risk of inundation; particularly, in areas with existing shallow groundwater. The predicted risk of a high groundwater table on road infrastructure is a long-term hazard. Therefore, there is time to undertake some management plans to decrease the possible risks, for instance, some deep root plants could be planted along the roads with a high level of risk, to decrease the groundwater table elevation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A teaching laboratory experiment is described that uses Archimedes’ principle to precisely investigate the effect of global warming on the oceans. A large component of sea level rise is due to the increase in the volume of water due to the decrease in water density with increasing temperature. Water close to 0 °C is placed in a beaker and a glass marble hung from an electronic balance immersed in the water. As the water warms, the weight of the marble increases as the water is less buoyant due to the decrease in density. In the experiment performed in this paper a balance with a precision of 0.1 mg was used with a marble 40.0 cm3 and mass of 99.3 g, yielding water density measurements with an average error of -0.008 ± 0.011%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Saltwater intrusion into coastal aquifers is a global issue, exacerbated by increasing demands for freshwater in coastal regions. This study investigates into the parametric analysis on saltwater intrusion in a conceptual, coastal, unconfined aquifer considering wide range of freshwater draft and anticipated sea level rise. The saltwater intrusion under various circumstances is simulated through parametric studies using MODFLOW, MT3DMS and SEAWAT. The MODFLOW is used to simulate the groundwater flow system under changing hydro-dynamics in coastal aquifer. To simulate solute transport MT3DMS and SEAWAT is used. The saltwater intrusion process has direct bearing on hydraulic conductivity and inversely related to porosity. It may also be noted that increase in recharge rate considered in the study does not have much influence on saltwater intrusion. Effect of freshwater draft at locations beyond half of the width of the aquifer considered has marginal effect and hence can be considered as safe zone for freshwater withdrawals. Due to the climate change effect, the anticipated rise in sea level of 0.88 m over a century is considered in the investigation. This causes increase in salinity intrusion by about 25%. The combined effect of sea level rise and freshwater draft (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Management of coastal development in Hawaii is based on the location of the certified shoreline, which is representative of the upper limit of marine inundation within the last several years. Though the certified shoreline location is significantly more variable than long-term erosion indicators, its migration will still follow the coastline's general trend. The long-term migration of Hawaii’s coasts will be significantly controlled by rising sea level. However, land use decisions adjacent to the shoreline and the shape and nature of the nearshore environment are also important controls to coastal migration. Though each of the islands has experienced local sea-level rise over the course of the last century, there are still locations across the islands of Kauai, Oahu, and Maui, which show long- term accretion or anomalously high erosion rates relative to their regions. As a result, engineering rules of thumb such as the Brunn rule do not always predict coastal migration and beach profile equilibrium in Hawaii. With coastlines facing all points of the compass rose, anthropogenic alteration of the coasts, complex coastal environments such as coral reefs, and the limited capacity to predict coastal change, Hawaii will require a more robust suite of proactive coastal management policies to weather future changes to its coastline. Continuing to use the current certified shoreline, adopting more stringent coastal setback rules similar to Kauai County, adding realistic sea-level rise components for all types of coastal planning, and developing regional beach management plans are some of the recommended adaptation strategies for Hawaii. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tidal and sea level changes during 1991 at a coastal station (Jeddah) in the central part of the Red Sea are investigated. Analysis shows higher sea levels in winter and lower in summer. The amplitude of change at Jeddah is above 50cm. Analysis of wind stress at Jeddah indicates an insignificant contribution of the cross-shore component, while a major part of the changes in the sea level can be accounted for by the long-shore component.